dropout2d¶
根据丢弃概率 p,在训练过程中随机将某些通道特征图置 0(对一个形状为 NCHW 的 4 维张量,通道特征图指的是其中的形状为 HW 的 2 维特征图)。
注解
该 op 基于 paddle.nn.functional.dropout
实现,如您想了解更多,请参见 dropout 。
参数¶
x (Tensor):形状为[N, C, H, W]或[N, H, W, C]的 4D Tensor,数据类型为 float32 或 float64。
p (float):将输入通道置 0 的概率,即丢弃概率。默认:0.5。
training (bool):标记是否为训练阶段。默认:True。
name (str,可选) - 具体用法请参见 Name,一般无需设置,默认值为 None。
返回¶
经过 dropout2d 之后的结果,与输入 x 形状相同的 Tensor 。
代码示例¶
import paddle
x = paddle.randn(shape=(2, 3, 4, 5)).astype(paddle.float32)
y_train = paddle.nn.functional.dropout2d(x) #train
y_test = paddle.nn.functional.dropout2d(x, training=False) #test
for i in range(2):
for j in range(3):
print(x[i,j,:,:])
print(y_train[i,j,:,:]) # may all 0
print(y_test[i,j,:,:])