AdaptiveMaxPool2D¶
该算子根据输入 x , output_size 等参数对一个输入 Tensor 计算 2D 的自适应最大池化。输入和输出都是 4-D Tensor, 默认是以 NCHW 格式表示的,其中 N 是 batch size, C 是通道数,H 是输入特征的高度,W 是输入特征的宽度。
计算公式如下:
\[ \begin{align}\begin{aligned}lstart &= floor(i * L_{in} / L_{out})\\lend &= ceil((i + 1) * L_{in} / L_{out})\\Output(i) &= max(Input[lstart:lend])\\hstart &= floor(i * H_{in} / H_{out})\\hend &= ceil((i + 1) * H_{in} / H_{out})\\wstart &= floor(j * W_{in} / W_{out})\\wend &= ceil((j + 1) * W_{in} / W_{out})\\Output(i ,j) &= max(Input[hstart:hend, wstart:wend])\end{aligned}\end{align} \]
参数¶
output_size (int|list|tuple):算子输出特征图的高和宽大小,其数据类型为 int,list 或 tuple。
return_mask (bool,可选):如果设置为 True,则会与输出一起返回最大值的索引,默认为 False。
name (str,可选) - 具体用法请参见 Name,一般无需设置,默认值为 None。
形状¶
x (Tensor):默认形状为(批大小,通道数,输出特征长度,宽度),即 NCHW 格式的 4-D Tensor。其数据类型为 float32 或者 float64。
output (Tensor):默认形状为(批大小,通道数,输出特征长度,宽度),即 NCHW 格式的 4-D Tensor。其数据类型与输入 x 相同。
返回¶
计算 AdaptiveMaxPool2D 的可调用对象
代码示例¶
# adaptive max pool2d
# suppose input data in shape of [N, C, H, W], `output_size` is [m, n],
# output shape is [N, C, m, n], adaptive pool divide H and W dimensions
# of input data into m * n grids averagely and performs poolings in each
# grid to get output.
# adaptive max pool performs calculations as follow:
#
# for i in range(m):
# for j in range(n):
# hstart = floor(i * H / m)
# hend = ceil((i + 1) * H / m)
# wstart = floor(i * W / n)
# wend = ceil((i + 1) * W / n)
# output[:, :, i, j] = max(input[:, :, hstart: hend, wstart: wend])
#
import paddle
x = paddle.rand([2, 3, 32, 32])
adaptive_max_pool = paddle.nn.AdaptiveMaxPool2D(output_size=3, return_mask=True)
pool_out, indices = adaptive_max_pool(x = x)