ChannelShuffle¶
将一个形为 [N, C, H, W] 或是 [N, H, W, C] 的 Tensor 按通道分成 g 组,得到形为 [N, g, C/g, H, W] 或 [N, H, W, g, C/g] 的 Tensor,然后转置为 [N, C/g, g, H, W] 或 [N, H, W, C/g, g] 的形状,最后重塑为原来的形状。这样做可以增加通道间的信息流动,提高特征的重用率。详见张祥雨等人在 2017 年发表的论文 ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices 。
参数¶
groups (int) – 要把通道分成的组数。
data_format (str,可选) – 数据格式,可选:NCHW 或 NHWC,默认为 NCHW,即(批大小,通道数,高度,宽度)的格式。
name (str,可选) - 具体用法请参见 Name,一般无需设置,默认值为 None。
形状¶
x (Tensor) – 默认形状为(批大小,通道数,高度,宽度),即 NCHW 格式的 4-D Tensor。其数据类型为 float32 或 float64。
out (Tensor) – 其形状与数据类型均和输入相同。
返回¶
计算 ChannelShuffle 的可调用对象。
代码示例¶
import paddle
import paddle.nn as nn
x = paddle.arange(0, 0.6, 0.1, 'float32')
x = paddle.reshape(x, [1, 6, 1, 1])
# [[[[0. ]],
# [[0.10000000]],
# [[0.20000000]],
# [[0.30000001]],
# [[0.40000001]],
# [[0.50000000]]]]
channel_shuffle = nn.ChannelShuffle(3)
y = channel_shuffle(x)
# [[[[0. ]],
# [[0.20000000]],
# [[0.40000001]],
# [[0.10000000]],
# [[0.30000001]],
# [[0.50000000]]]]