AdaptiveMaxPool1D

paddle.nn. AdaptiveMaxPool1D ( output_size, return_mask=False, name=None ) [源代码]

根据输入 x , output_size 等参数对一个输入 Tensor 计算 1D 的自适应最大池化。输入和输出都是 3-D Tensor, 默认是以 NCL 格式表示的,其中 N 是 batch size, C 是通道数,L 是输入特征的长度。

计算公式如下:

\[ \begin{align}\begin{aligned}lstart &= floor(i * L_{in} / L_{out})\\lend &= ceil((i + 1) * L_{in} / L_{out})\\Output(i) &= max(Input[lstart:lend])\end{aligned}\end{align} \]

参数

  • output_size (int|list|tuple):算子输出特征图的长度,其数据类型为 int,list 或 tuple。

  • return_mask (bool,可选):如果设置为 True,则会与输出一起返回最大值的索引,默认为 False。

  • name (str,可选) - 具体用法请参见 Name,一般无需设置,默认值为 None。

形状

  • x (Tensor):默认形状为(批大小,通道数,输出特征长度),即 NCL 格式的 3-D Tensor。其数据类型为 float32 或者 float64。

  • output (Tensor):默认形状为(批大小,通道数,输出特征长度),即 NCL 格式的 3-D Tensor。其数据类型与输入 x 相同。

返回

计算 AdaptiveMaxPool1D 的可调用对象

代码示例

# max adaptive pool1d
# suppose input data in shape of [N, C, L], `output_size` is m or [m],
# output shape is [N, C, m], adaptive pool divide L dimension
# of input data into m grids averagely and performs poolings in each
# grid to get output.
# adaptive max pool performs calculations as follow:
#
#     for i in range(m):
#         lstart = floor(i * L / m)
#         lend = ceil((i + 1) * L / m)
#         output[:, :, i] = max(input[:, :, lstart: lend])
#
import paddle
import paddle.nn as nn

data = paddle.uniform([1, 3, 32], dtype="float32", min=-1, max=1)
AdaptiveMaxPool1D = nn.AdaptiveMaxPool1D(output_size=16)
pool_out = AdaptiveMaxPool1D(data)
# pool_out shape: [1, 3, 16]

# for return_mask = true
AdaptiveMaxPool1D = nn.AdaptiveMaxPool1D(output_size=16, return_mask=True)
pool_out, indices = AdaptiveMaxPool1D(data)
# pool_out shape: [1, 3, 16], indices shape: [1, 3, 16]