SmoothL1Loss¶
该 OP 计算输入 input 和标签 label 间的 SmoothL1 损失,如果逐个元素的绝对误差低于 1,则创建使用平方项的条件 ,否则为 L1 损失。在某些情况下,它可以防止爆炸梯度,也称为 Huber 损失,该损失函数的数学计算公式如下:
\[loss(x,y) = \frac{1}{n}\sum_{i}z_i\]
`z_i`的计算公式如下:
\[\begin{split}\mathop{z_i} = \left\{\begin{array}{rcl} 0.5(x_i - y_i)^2 & & {if |x_i - y_i| < delta} \\ delta * |x_i - y_i| - 0.5 * delta^2 & & {otherwise} \end{array} \right.\end{split}\]
参数¶
reduction (string,可选): - 指定应用于输出结果的计算方式,数据类型为 string,可选值有:none, mean, sum。默认为 mean,计算 mini-batch loss 均值。设置为 sum 时,计算 mini-batch loss 的总和。设置为 none 时,则返回 loss Tensor。
delta (string,可选): SmoothL1Loss 损失的阈值参数,用于控制 Huber 损失对线性误差或平方误差的侧重。数据类型为 float32。默认值= 1.0。
name (str,可选) - 具体用法请参见 Name,一般无需设置,默认值为 None。
输入¶
input (Tensor):输入 Tensor,数据类型为 float32。其形状为 \([N, C]\),其中 C 为类别数。对于多维度的情形下,它的形状为 \([N, C, d_1, d_2, ..., d_k]\),k >= 1。
label (Tensor):输入 input 对应的标签值,数据类型为 float32。数据类型和 input 相同。
返回¶
Tensor,计算 SmoothL1Loss 后的损失值。
代码示例¶
import paddle
input = paddle.rand([3, 3]).astype("float32")
label = paddle.rand([3, 3]).astype("float32")
loss = paddle.nn.SmoothL1Loss()
output = loss(input, label)
print(output)
# [0.049606]