resize_bilinear¶
- paddle.fluid.layers. resize_bilinear ( input, out_shape=None, scale=None, name=None, actual_shape=None, align_corners=True, align_mode=1, data_format='NCHW' ) [源代码] ¶
注意: 参数 actual_shape
将被弃用,请使用 out_shape
替代。
该OP应用双向性插值法调整输入图片的大小,输出形状按优先级由actual_shape、out_shape和scale指定。
双线性插值是对线性插值的扩展,即二维变量方向上(如h方向和w方向)插值。关键思想是先在一个方向上执行线性插值,然后再在另一个方向上执行线性插值。
详情请参阅 维基百科 。
align_corners和align_mode是可选参数,插值的计算方法可以由它们选择。
Example:
For scale:
if align_corners = True && out_size > 1 :
scale_factor = (in_size-1.0)/(out_size-1.0)
else:
scale_factor = float(in_size/out_size)
Bilinear interpolation:
if align_corners = False , align_mode = 0
input : (N,C,H_in,W_in)
output: (N,C,H_out,W_out) where:
H_out = (H_{in}+0.5) * scale_{factor} - 0.5
W_out = (W_{in}+0.5) * scale_{factor} - 0.5
else:
input : (N,C,H_in,W_in)
output: (N,C,H_out,W_out) where:
H_out = H_{in} * scale_{factor}
W_out = W_{in} * scale_{factor}
参数¶
input (Variable) - 4-D Tensor,数据类型为float32、float64或uint8,其数据格式由参数
data_format
指定。out_shape (list|tuple|Variable|None) - 双线性层的输出形状,维度为[out_h, out_w]的二维Tensor。如果
out_shape
是列表,每一个元素可以是整数或者维度为[1]的变量。如果out_shape
是变量,则其维度大小为1。默认值为None。scale (float|Variable|None) - 用于输入高度或宽度的乘数因子。out_shape和scale至少要设置一个。out_shape的优先级高于scale。默认值为None。
name (str,可选) - 具体用法请参见 Name,一般无需设置,默认值为 None。
actual_shape (Variable) - 可选输入,用于动态指定输出形状。如果指定actual_shape,图像将根据给定的形状调整大小,而不是根据指定形状的
out_shape
和scale
进行调整。也就是说,actual_shape
具有最高的优先级。注意:如果希望动态指定输出形状,建议使用out_shape
,因为actual_shape
未来将被弃用。在使用actual_shape指定输出形状时,仍然需要设置out_shape和scale之一,否则在图形构建阶段会出现错误。默认值为None。align_corners (bool)- 一个可选的bool型参数,如果为True,则将输入和输出张量的4个角落像素的中心对齐,并保留角点像素的值。默认值为True
align_mode (int)- 双线性插值的可选项。可以是'0'代表src_idx = scale *(dst_indx + 0.5)-0.5;如果为'1',代表src_idx = scale * dst_index。
data_format (str,可选)- 指定输入的数据格式,输出的数据格式将与输入保持一致,可以是"NCHW"和"NHWC"。N是批尺寸,C是通道数,H是特征高度,W是特征宽度。默认值:"NCHW"。
返回¶
4-D Tensor,形状为 (num_batches, channels, out_h, out_w) 或 (num_batches, out_h, out_w, channels)。
代码示例¶
#declarative mode
import paddle.fluid as fluid
import numpy as np
import paddle
paddle.enable_static()
input = fluid.data(name="input", shape=[None,3,6,10])
#1
output = fluid.layers.resize_bilinear(input=input,out_shape=[12,12])
#2
#x = np.array([2]).astype("int32")
#dim1 = fluid.data(name="dim1", shape=[1], dtype="int32")
#fluid.layers.assign(input=x, output=dim1)
#output = fluid.layers.resize_bilinear(input=input,out_shape=[12,dim1])
#3
#x = np.array([3,12]).astype("int32")
#shape_tensor = fluid.data(name="shape_tensor", shape=[2], dtype="int32")
#fluid.layers.assign(input=x, output=shape_tensor)
#output = fluid.layers.resize_bilinear(input=input,out_shape=shape_tensor)
#4
#x = np.array([0.5]).astype("float32")
#scale_tensor = fluid.data(name="scale", shape=[1], dtype="float32")
#fluid.layers.assign(x,scale_tensor)
#output = fluid.layers.resize_bilinear(input=input,scale=scale_tensor)
place = fluid.CPUPlace()
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
input_data = np.random.rand(2,3,6,10).astype("float32")
output_data = exe.run(fluid.default_main_program(),
feed={"input":input_data},
fetch_list=[output],
return_numpy=True)
print(output_data[0].shape)
#1
# (2, 3, 12, 12)
#2
# (2, 3, 12, 2)
#3
# (2, 3, 3, 12)
#4
# (2, 3, 3, 5)
#imperative mode
import paddle.fluid.dygraph as dg
with dg.guard(place) as g:
input = dg.to_variable(input_data)
output = fluid.layers.resize_bilinear(input=input, out_shape=[12,12])
print(output.shape)
# [2L, 3L, 12L, 12L]