data

paddle.fluid. data ( name, shape, dtype='float32', lod_level=0 ) [源代码]

该OP会在全局block中创建变量(Variable),该全局变量可被计算图中的算子(operator)访问。该变量可作为占位符用于数据输入。例如用执行器(Executor)feed数据进该变量

注意:

不推荐使用 paddle.fluid.layers.data,其在之后的版本中会被删除。请使用这个 paddle.fluid.data

paddle.fluid.layers.data 在组网期间会设置创建的变量维度(shape)和数据类型(dtype),但不会检查输入数据的维度和数据类型是否符合要求。paddle.fluid.data 会在运行过程中由Executor/ParallelExecutor检查输入数据的维度和数据类型。

如果想输入变长输入,可以使用 paddle.fluid.data 时将变长维度设为-1,或者直接输入 paddle.fluid.layers.data 且PaddlePaddle会按具体输入的形状运行。

本API创建的变量默认 stop_gradient 属性为true,这意味这反向梯度不会被传递过这个数据变量。如果用户想传递反向梯度,可以设置 var.stop_gradient = False

参数

  • name (str,可选) - 具体用法请参见 Name,一般无需设置,默认值为 None。

  • shape (list|tuple)- 声明维度信息的list或tuple。

  • dtype (np.dtype|VarType|str,可选)- 数据类型,支持bool,float16,float32,float64,int8,int16,int32,int64,uint8。默认值为float32。

  • lod_level (int,可选)- LoDTensor变量的LoD level数,LoD level是PaddlePaddle的高级特性,一般任务中不会需要更改此默认值,关于LoD level的详细适用场景和用法请见 cn_user_guide_lod_tensor。默认值为0。

返回

全局变量,可进行数据访问

返回类型

Variable

代码示例

import paddle
import paddle.fluid as fluid
import numpy as np
paddle.enable_static()

# Creates a variable with fixed size [3, 2, 1]
# User can only feed data of the same shape to x
x = fluid.data(name='x', shape=[3, 2, 1], dtype='float32')

# Creates a variable with changeable batch size -1.
# Users can feed data of any batch size into y,
# but size of each data sample has to be [2, 1]
y = fluid.data(name='y', shape=[-1, 2, 1], dtype='float32')

z = x + y

# In this example, we will feed x and y with np-ndarray "1"
# and fetch z, like implementing "1 + 1 = 2" in PaddlePaddle
feed_data = np.ones(shape=[3, 2, 1], dtype=np.float32)

exe = fluid.Executor(fluid.CPUPlace())
out = exe.run(fluid.default_main_program(),
              feed={
                  'x': feed_data,
                  'y': feed_data
              },
              fetch_list=[z.name])

# np-ndarray of shape=[3, 2, 1], dtype=float32, whose elements are 2
print(out)