hsigmoid

paddle.fluid.layers. hsigmoid ( input, label, num_classes, param_attr=None, bias_attr=None, name=None, path_table=None, path_code=None, is_custom=False, is_sparse=False ) [源代码]

层次sigmoid(hierarchical sigmoid),该OP通过构建一个分类二叉树来降低计算复杂度,主要用于加速语言模型的训练过程。

该OP建立的二叉树中每个叶节点表示一个类别(单词),每个非叶子节点代表一个二类别分类器(sigmoid)。对于每个类别(单词),都有一个从根节点到它的唯一路径,hsigmoid累加这条路径上每个非叶子节点的损失得到总损失。

相较于传统softmax的计算复杂度 \(O(N)\) ,hsigmoid可以将计算复杂度降至 \(O(logN)\),其中 \(N\) 表示类别总数(字典大小)。

若使用默认树结构,请参考 Hierarchical Probabilistic Neural Network Language Model

若使用自定义树结构,请将参数 is_custom 设置为True,并完成以下步骤(以语言模型为例):

  1. 使用自定义词典来建立二叉树,每个叶结点都应该是词典中的单词;

  2. 建立一个dict类型数据结构,用于存储 单词id -> 该单词叶结点至根节点路径 的映射,即路径表 path_table 参数;

  3. 建立一个dict类型数据结构,用于存储 单词id -> 该单词叶结点至根节点路径的编码 的映射,即路径编码 path_code 参数。编码是指每次二分类的标签,1为真,0为假;

  4. 每个单词都已经有自己的路径和路径编码,当对于同一批输入进行操作时,可以同时传入一批路径和路径编码进行运算。

参数

  • input (Variable) - 输入Tensor。数据类型为float32或float64,形状为 [N, D],其中 N 为minibatch的大小,D 为特征大小。

  • label (Variable) - 训练数据的标签。数据类型为int64,形状为 [N, 1]

  • num_classes (int) - 类别总数(字典大小)必须大于等于2。若使用默认树结构,即当 is_custom=False 时,必须设置该参数。若使用自定义树结构,即当 is_custom=True 时,它取值应为自定义树结构的非叶节点的个数,用于指定二分类的类别总数。

  • param_attr (ParamAttr,可选) - 该OP可学习参数的属性。可以设置为None或者一个ParamAttr的类(ParamAttr中可以指定参数的各种属性)。该OP将利用 param_attr 属性来创建ParamAttr实例。如果没有设置 param_attr 的初始化函数,那么参数将采用Xavier初始化。默认值为None。

  • bias_attr (ParamAttr,可选) - 该OP的偏置参数的属性。可以设置为None或者一个ParamAttr的类(ParamAttr中可以指定参数的各种属性)。该OP将利用 bias_attr 属性来创建ParamAttr实例。如果没有设置 bias_attr 的初始化函数,参数初始化为0.0。默认值为None。

  • name (str,可选) - 具体用法请参见 Name,一般无需设置,默认值为 None。

  • path_table (Variable,可选) – 存储每一批样本从类别(单词)到根节点的路径,按照从叶至根方向存储。数据类型为int64,形状为 [N, L],其中L为路径长度。path_tablepath_code 应具有相同的形状,对于每个样本i,path_table[i]为一个类似np.ndarray的结构,该数组内的每个元素都是其双亲结点权重矩阵的索引。默认值为None。

  • path_code (Variable,可选) – 存储每一批样本从类别(单词)到根节点的路径编码,按从叶至根方向存储。数据类型为int64,形状为 [N, L]。默认值为None。

  • is_custom (bool,可选) – 是否使用用户自定义二叉树取代默认二叉树结构。如果设置为True,请务必设置 path_tablepath_codenum_classes,否则必须设置num_classes。默认值为False。

  • is_sparse (bool,可选) – 是否使用稀疏更新方式。如果设置为True,W的梯度和输入梯度将会变得稀疏。默认值为False。

返回

层次sigmoid计算后的Tensor,形状为[N, 1],数据类型和 input 一致。

返回类型

Variable

代码示例

import paddle.fluid as fluid
x = fluid.layers.fill_constant(shape=[4, 3], value=0.9, dtype='float32')
# x = [[0.9, 0.9, 0.9], [0.9, 0.9, 0.9], [0.9, 0.9, 0.9], [0.9, 0.9, 0.9]]
y = fluid.layers.fill_constant(
    shape=[4, 1], value=1, dtype='int64')
# y = [[1], [1], [1], [1]]
out = fluid.layers.hsigmoid(input=x, label=y, num_classes=2, param_attr=fluid.initializer.Constant(
    value=0.05), bias_attr=fluid.initializer.Constant(value=.0))
# out = [[0.62792355], [0.62792355], [0.62792355], [0.62792355]]