sequence_first_step¶
该 API 仅支持带有 LoD 信息的 Tensor 类型的输入。
对输入的 Tensor,在最后一层 lod_level 上,选取其每个序列(sequence)的第一个时间步(time_step)的特征向量作为池化后的输出向量。
Case 1:
input 是 1-level Tensor:
input.lod = [[0, 2, 5, 7]]
input.data = [[1.], [3.], [2.], [4.], [6.], [5.], [1.]]
input.shape = [7, 1]
输出为 Tensor:
out.shape = [3, 1]
且 out.shape[0] == len(x.lod[-1]) == 3
out.data = [[1.], [2.], [5.]], where 1.=first(1., 3.), 2.=first(2., 4., 6.), 5.=first(5., 1.)
Case 2:
input 是 2-level 的 Tensor,包含 3 个长度分别为[2, 0, 3]的序列,其中中间的 0 表示序列为空。
第一个长度为 2 的序列包含 2 个长度分别为[1, 2]的子序列;
最后一个长度为 3 的序列包含 3 个长度分别为[1, 0, 3]的子序列。
input.lod = [[0, 2, 2, 5], [0, 1, 3, 4, 4, 7]]
input.data = [[1.], [3.], [2.], [4.], [6.], [5.], [1.]]
input.shape = [7, 1]
将根据最后一层的 lod 信息[0, 1, 3, 4, 4, 7]进行池化操作,且 pad_value = 0.0
输出为 Tensor:
out.shape= [5, 1]
out.lod = [[0, 2, 2, 5]]
其中 out.shape[0] == len(x.lod[-1]) == 5
out.data = [[1.], [3.], [4.], [0.0], [6.]]
where 1.=first(1.), 3.=first(3., 2.), 4.=first(4.), 0.0 = pad_value, 6.=first(6., 5., 1.)
参数¶
input (Variable)- 类型为 Tensor 的输入序列,仅支持 lod_level 不超过 2 的 Tensor,数据类型为 float32。
返回¶
每个输入序列中的第一个 step 的特征向量组成的 Tensor,数据类型为 float32。
代码示例¶
import paddle
paddle.enable_static()
x = paddle.static.data(name='x', shape=[None, 10], dtype='float32', lod_level=1)
x_first_step = paddle.static.nn.sequence_first_step(input=x)