shufflenet_v2_x0_33

paddle.vision.models. shufflenet_v2_x0_33 ( pretrained=False, **kwargs ) [源代码]

输出通道缩放比例为 0.33 的 ShuffleNetV2 模型,来自论文 "ShuffleNet V2: Practical Guidelines for Ecient CNN Architecture Design"

参数

  • pretrained (bool,可选) - 是否加载预训练权重。如果为 True,则返回在 ImageNet 上预训练的模型。默认值为 False。

  • **kwargs (可选) - 附加的关键字参数,具体可选参数请参见 ShuffleNetV2

返回

Layer,输出通道缩放比例为 0.33 的 ShuffleNetV2 模型实例。

代码示例

import paddle
from paddle.vision.models import shufflenet_v2_x0_33

# build model
model = shufflenet_v2_x0_33()

# build model and load imagenet pretrained weight
# model = shufflenet_v2_x0_33(pretrained=True)

x = paddle.rand([1, 3, 224, 224])
out = model(x)

print(out.shape)
# [1, 1000]