shufflenet_v2_x1_5¶
- paddle.vision.models. shufflenet_v2_x1_5 ( pretrained=False, **kwargs ) [源代码] ¶
-
输出通道缩放比例为 1.5 的 ShuffleNetV2 模型,来自论文 "ShuffleNet V2: Practical Guidelines for Ecient CNN Architecture Design" 。
参数¶
pretrained (bool,可选) - 是否加载在imagenet数据集上的预训练权重。默认值:False。
返回¶
shufflenet_v2_x1_5模型,Layer的实例。
代码示例¶
import paddle
from paddle.vision.models import shufflenet_v2_x1_5
# build model
model = shufflenet_v2_x1_5()
# build model and load imagenet pretrained weight
# model = shufflenet_v2_x1_5(pretrained=True)
x = paddle.rand([1, 3, 224, 224])
out = model(x)
print(out.shape)