SpectralNorm¶
- class paddle.nn. SpectralNorm ( weight_shape, dim=0, power_iters=1, eps=1e-12, name=None, dtype='float32' ) [源代码] ¶
该接口用于构建 SpectralNorm
类的一个可调用对象,具体用法参照 代码示例
。其中实现了谱归一化层的功能,用于计算fc、conv1d、conv2d、conv3d层的权重参数的谱正则值,输入权重参数应分别为2-D, 3-D, 4-D, 5-D张量,输出张量与输入张量维度相同。谱特征值计算方式如下:
步骤1:生成形状为[H]的向量U,以及形状为[W]的向量V,其中H是输入权重张量的第 dim
个维度,W是剩余维度的乘积。
步骤2: power_iters
应该是一个正整数,用U和V迭代计算 power_iters
轮,迭代步骤如下。
\[\begin{split}\mathbf{v} &:= \frac{\mathbf{W}^{T} \mathbf{u}}{\|\mathbf{W}^{T} \mathbf{u}\|_2}\\ \mathbf{u} &:= \frac{\mathbf{W}^{T} \mathbf{v}}{\|\mathbf{W}^{T} \mathbf{v}\|_2}\end{split}\]
步骤3:计算 \(\sigma(\mathbf{W})\) 并特征值值归一化。
\[\begin{split}\sigma(\mathbf{W}) &= \mathbf{u}^{T} \mathbf{W} \mathbf{v}\\ \mathbf{W} &= \frac{\mathbf{W}}{\sigma(\mathbf{W})}\end{split}\]
参数¶
weight_shape (list 或 tuple) - 权重参数的shape。
dim (int, 可选) - 将输入(weight)重塑为矩阵之前应排列到第一个的维度索引,如果input(weight)是fc层的权重,则应设置为0;如果input(weight)是conv层的权重,则应设置为1。默认值:0。
power_iters (int, 可选) - 将用于计算的
SpectralNorm
功率迭代次数,默认值:1。eps (float, 可选) -
eps
用于保证计算规范中的数值稳定性,分母会加上eps
防止除零。默认值:1e-12。name (str, 可选) - 具体用法请参见 Name ,一般无需设置,默认值为None。
dtype (str, 可选) - 数据类型,可以为"float32"或"float64"。默认值为"float32"。
形状¶
input: 任意形状的Tensor。
output: 和输入形状一样。
代码示例¶
import paddle
x = paddle.rand((2,8,32,32))
spectral_norm = paddle.nn.SpectralNorm(x.shape, dim=1, power_iters=2)
spectral_norm_out = spectral_norm(x)
print(spectral_norm_out.shape) # [2, 8, 32, 32]