init_parallel_env¶
初始化动态图模式下的并行训练环境。
注解
目前同时初始化 NCCL
和 GLOO
上下文用于通信。
返回¶
无
代码示例¶
# required: gpu
import paddle
import paddle.nn as nn
import paddle.optimizer as opt
import paddle.distributed as dist
class LinearNet(nn.Layer):
def __init__(self):
super().__init__()
self._linear1 = nn.Linear(10, 10)
self._linear2 = nn.Linear(10, 1)
def forward(self, x):
return self._linear2(self._linear1(x))
def train():
# 1. initialize parallel environment
dist.init_parallel_env()
# 2. create data parallel layer & optimizer
layer = LinearNet()
dp_layer = paddle.DataParallel(layer)
loss_fn = nn.MSELoss()
adam = opt.Adam(
learning_rate=0.001, parameters=dp_layer.parameters())
# 3. run layer
inputs = paddle.randn([10, 10], 'float32')
outputs = dp_layer(inputs)
labels = paddle.randn([10, 1], 'float32')
loss = loss_fn(outputs, labels)
loss.backward()
adam.step()
adam.clear_grad()
if __name__ == '__main__':
dist.spawn(train)