ifft2

paddle.fft. ifft2 ( x, s=None, axes=(- 2, - 1), norm='backward', name=None ) [源代码]

二维傅里叶变换(fft2)的逆变换。在一定的误差范围内,ifft2(fft2(x)) == x

参数

  • x (Tensor) - 输入 Tensor,数据类型为实数或复数。

  • s (Sequence[int],可选) - 输出 Tensor 在每一个傅里叶变换轴上的长度(类似一维逆向傅 里叶变换中的参数 n)。对于每一个傅里叶变换的轴,如果 s 中该轴的长度比输入 Tensor 中对应轴的长度小,输入 Tensor 会被截断。如果 s 中该轴的长度比输入 Tensor 中对应轴 的长度大,则输入会被补零。如果 s 没有指定,则使用输入 Tensor 中由 axes 指定的各 个轴的长度。

  • axes (Sequence[int],可选) - 傅里叶变换的轴。如果没有指定,默认使用最后两维。

  • norm (str,可选) - 傅里叶变换的缩放模式,缩放系数由变换的方向和缩放模式同时决定。取值 必须是 "forward","backward","ortho" 之一,默认值为 "backward"。三种缩放模式对 应的行为如下:

    • "backward":正向和逆向变换的缩放系数分别为 11/n

    • "forward":正向和逆向变换的缩放系数分别为 1/n1

    • "ortho":正向和逆向变换的缩放系数均为 1/sqrt(n)

    其中 ns 中每个元素连乘。

  • name (str,可选) - 具体用法请参见 Name,一般无需设置,默认值为 None。

返回

Tensor,形状和输入 Tensor 相同,数据类型为复数。由输入 Tensor(可能被截断或者补零之后)在 指定维度进行傅里叶变换的输出。二维傅里叶变换是 N 维傅里叶变换的特例,参考 ifftn

代码示例

import numpy as np
import paddle

x = np.mgrid[:2, :2][1]
xp = paddle.to_tensor(x)
ifft2_xp = paddle.fft.ifft2(xp).numpy()
print(ifft2_xp)
#  [[ 0.5+0.j -0.5+0.j]
#   [ 0. +0.j  0. +0.j]]