模型可视化

通过 快速开始 一节,我们了解到,预测模型包含了两个文件,一部分为模型结构文件,通常以 model__model__ 文件存在;另一部分为参数文件,通常以params 文件或一堆分散的文件存在。

模型结构文件,顾名思义,存储了模型的拓扑结构,其中包括模型中各种OP的计算顺序以及OP的详细信息。很多时候,我们希望能够将这些模型的结构以及内部信息可视化,方便我们进行模型分析。接下来将会通过两种方式来讲述如何对Paddle 预测模型进行可视化。

一: 通过 VisualDL 可视化

1) 安装

VisualDL是飞桨可视化分析工具,以丰富的图表呈现训练参数变化趋势、模型结构、数据样本、高维数据分布等,帮助用户更清晰直观地理解深度学习模型训练过程及模型结构,实现高效的模型优化。 我们可以进入 GitHub主页 进行下载安装。

2)可视化

点击 下载测试模型。

支持两种启动方式:

  • 前端拖拽上传模型文件:

    • 无需添加任何参数,在命令行执行 visualdl 后启动界面上传文件即可:

https://user-images.githubusercontent.com/48054808/88628504-a8b66980-d0e0-11ea-908b-196d02ed1fa2.png
  • 后端透传模型文件:

    • 在命令行加入参数 –model 并指定 模型文件 路径(非文件夹路径),即可启动:

visualdl --model ./log/model --port 8080
https://user-images.githubusercontent.com/48054808/88621327-b664f280-d0d2-11ea-9e76-e3fcfeea4e57.png

Graph功能详细使用,请见 Graph使用指南

二: 通过代码方式生成dot文件

1)pip 安装Paddle

2)生成dot文件

点击 下载测试模型。

#!/usr/bin/env python
import paddle.fluid as fluid
from paddle.fluid import core
from paddle.fluid.framework import IrGraph

def get_graph(program_path):
    with open(program_path, 'rb') as f:
            binary_str = f.read()
    program =   fluid.framework.Program.parse_from_string(binary_str)
    return IrGraph(core.Graph(program.desc), for_test=True)

if __name__ == '__main__':
    program_path = './lecture_model/__model__'
    offline_graph = get_graph(program_path)
    offline_graph.draw('.', 'test_model', [])

3)生成svg

Note:需要环境中安装graphviz

dot -Tsvg ./test_mode.dot -o test_model.svg

然后将test_model.svg以浏览器打开预览即可。

https://user-images.githubusercontent.com/5595332/81796500-19b59e80-9540-11ea-8c70-31122e969683.png