通过OCR实现验证码识别

作者: GT_老张

时间: 2021.10

摘要: 本篇将介绍如何通过飞桨实现简单的CRNN+CTC自定义数据集OCR识别模型,数据集采用CaptchaDataset中OCR部分的9453张图像,其中前8453张图像在本案例中作为训练集,后1000张则作为测试集。
在更复杂的场景中推荐使用PaddleOCR产出工业级模型,模型轻量且精度大幅提升。
同样也可以在PaddleHub中快速使用PaddleOCR。

一、环境配置

本教程基于Paddle 2.2.0-rc0 编写,如果你的环境不是本版本,请先参考官网安装 Paddle 2.1 。

import paddle
print(paddle.__version__)
2.2.0-rc0

二、自定义数据集读取器

常见的开发任务中,我们并不一定会拿到标准的数据格式,好在我们可以通过自定义Reader的形式来随心所欲读取自己想要数据。

设计合理的Reader往往可以带来更好的性能,我们可以将读取标签文件列表、制作图像文件列表等必要操作在__init__特殊方法中实现。这样就可以在实例化Reader时装入内存,避免使用时频繁读取导致增加额外开销。同样我们可以在__getitem__特殊方法中实现如图像增强、归一化等个性操作,完成数据读取后即可释放该部分内存。
需要我们注意的是,如果不能保证自己数据十分纯净,可以通过tryexpect来捕获异常并指出该数据的位置。当然也可以制定一个策略,使其在发生数据读取异常后依旧可以正常进行训练。

2.1 数据展示

https://ai-studio-static-online.cdn.bcebos.com/57d6c77aa5194cdca5c7edc533cc57e4d5070de95f6a4454b3cd1ca1e0eebe98

点此快速获取本节数据集,待数据集下载完毕后可使用!unzip OCR_Dataset.zip -d data/命令或熟悉的解压软件进行解压,待数据准备工作完成后修改本文“训练准备”中的DATA_PATH = 解压后数据集路径

# 下载数据集 
!wget -O OCR_Dataset.zip https://bj.bcebos.com/v1/ai-studio-online/c91f50ef72de43b090298a38281e9c59a2d741eadd334f1cba7c710c5496e342?responseContentDisposition=attachment%3B%20filename%3DOCR_Dataset.zip&authorization=bce-auth-v1%2F0ef6765c1e494918bc0d4c3ca3e5c6d1%2F2020-10-27T09%3A50%3A21Z%2F-1%2F%2Fddc4aebed803af6c57dac46abba42d207961b78e7bc81744e8388395979b66fa
# 解压数据集
!unzip OCR_Dataset.zip -d data/
import os

import PIL.Image as Image
import numpy as np
from paddle.io import Dataset

# 图片信息配置 - 通道数、高度、宽度
IMAGE_SHAPE_C = 3
IMAGE_SHAPE_H = 30
IMAGE_SHAPE_W = 70
# 数据集图片中标签长度最大值设置 - 因图片中均为4个字符,故该处填写为4即可
LABEL_MAX_LEN = 4


class Reader(Dataset):
    def __init__(self, data_path: str, is_val: bool = False):
        """
        数据读取Reader
        :param data_path: Dataset路径
        :param is_val: 是否为验证集
        """
        super().__init__()
        self.data_path = data_path
        # 读取Label字典
        with open(os.path.join(self.data_path, "label_dict.txt"), "r", encoding="utf-8") as f:
            self.info = eval(f.read())
        # 获取文件名列表
        self.img_paths = [img_name for img_name in self.info]
        # 将数据集后1000张图片设置为验证集,当is_val为真时img_path切换为后1000张
        self.img_paths = self.img_paths[-1000:] if is_val else self.img_paths[:-1000]

    def __getitem__(self, index):
        # 获取第index个文件的文件名以及其所在路径
        file_name = self.img_paths[index]
        file_path = os.path.join(self.data_path, file_name)
        # 捕获异常 - 在发生异常时终止训练
        try:
            # 使用Pillow来读取图像数据
            img = Image.open(file_path)
            # 转为Numpy的array格式并整体除以255进行归一化
            img = np.array(img, dtype="float32").reshape((IMAGE_SHAPE_C, IMAGE_SHAPE_H, IMAGE_SHAPE_W)) / 255
        except Exception as e:
            raise Exception(file_name + "\t文件打开失败,请检查路径是否准确以及图像文件完整性,报错信息如下:\n" + str(e))
        # 读取该图像文件对应的Label字符串,并进行处理
        label = self.info[file_name]
        label = list(label)
        # 将label转化为Numpy的array格式
        label = np.array(label, dtype="int32").reshape(LABEL_MAX_LEN)

        return img, label

    def __len__(self):
        # 返回每个Epoch中图片数量
        return len(self.img_paths)

三、模型配置

3.1 定义模型结构以及模型输入

模型方面使用的简单的CRNN-CTC结构,输入形为CHW的图像在经过CNN->Flatten->Linear->RNN->Linear后输出图像中每个位置所对应的字符概率。考虑到CTC解码器在面对图像中元素数量不一、相邻元素重复时会存在无法正确对齐等情况,故额外添加一个类别代表“分隔符”进行改善。

CTC相关论文:Connectionist Temporal Classification: Labelling Unsegmented Sequence Data with Recurrent Neu

https://ai-studio-static-online.cdn.bcebos.com/8ce1fce57f9f47c5b19a4e61caae7e6330b1b42dde1c4f4593d2181fbf474b8b

网络部分,因本篇采用数据集较为简单且图像尺寸较小并不适合较深层次网络。若在对尺寸较大的图像进行模型构建,可以考虑使用更深层次网络/注意力机制来完成。当然也可以通过目标检测形式先检出文本位置,然后进行OCR部分模型构建。

https://ai-studio-static-online.cdn.bcebos.com/19ddf6107e7f47ee9b3b84ee0c12de1e15f7ab8b88f04eed95232440c92fe0d7

PaddleOCR效果图

import paddle

# 分类数量设置 - 因数据集中共包含0~9共10种数字+分隔符,所以是11分类任务
CLASSIFY_NUM = 11

# 定义输入层,shape中第0维使用-1则可以在预测时自由调节batch size
input_define = paddle.static.InputSpec(shape=[-1, IMAGE_SHAPE_C, IMAGE_SHAPE_H, IMAGE_SHAPE_W],
                                   dtype="float32",
                                   name="img")

# 定义网络结构
class Net(paddle.nn.Layer):
    def __init__(self, is_infer: bool = False):
        super().__init__()
        self.is_infer = is_infer

        # 定义一层3x3卷积+BatchNorm
        self.conv1 = paddle.nn.Conv2D(in_channels=IMAGE_SHAPE_C,
                                  out_channels=32,
                                  kernel_size=3)
        self.bn1 = paddle.nn.BatchNorm2D(32)
        # 定义一层步长为2的3x3卷积进行下采样+BatchNorm
        self.conv2 = paddle.nn.Conv2D(in_channels=32,
                                  out_channels=64,
                                  kernel_size=3,
                                  stride=2)
        self.bn2 = paddle.nn.BatchNorm2D(64)
        # 定义一层1x1卷积压缩通道数,输出通道数设置为比LABEL_MAX_LEN稍大的定值可获取更优效果,当然也可设置为LABEL_MAX_LEN
        self.conv3 = paddle.nn.Conv2D(in_channels=64,
                                  out_channels=LABEL_MAX_LEN + 4,
                                  kernel_size=1)
        # 定义全连接层,压缩并提取特征(可选)
        self.linear = paddle.nn.Linear(in_features=429,
                                   out_features=128)
        # 定义RNN层来更好提取序列特征,此处为双向LSTM输出为2 x hidden_size,可尝试换成GRU等RNN结构
        self.lstm = paddle.nn.LSTM(input_size=128,
                               hidden_size=64,
                               direction="bidirectional")
        # 定义输出层,输出大小为分类数
        self.linear2 = paddle.nn.Linear(in_features=64 * 2,
                                    out_features=CLASSIFY_NUM)

    def forward(self, ipt):
        # 卷积 + ReLU + BN
        x = self.conv1(ipt)
        x = paddle.nn.functional.relu(x)
        x = self.bn1(x)
        # 卷积 + ReLU + BN
        x = self.conv2(x)
        x = paddle.nn.functional.relu(x)
        x = self.bn2(x)
        # 卷积 + ReLU
        x = self.conv3(x)
        x = paddle.nn.functional.relu(x)
        # 将3维特征转换为2维特征 - 此处可以使用reshape代替
        x = paddle.tensor.flatten(x, 2)
        # 全连接 + ReLU
        x = self.linear(x)
        x = paddle.nn.functional.relu(x)
        # 双向LSTM - [0]代表取双向结果,[1][0]代表forward结果,[1][1]代表backward结果,详细说明可在官方文档中搜索'LSTM'
        x = self.lstm(x)[0]
        # 输出层 - Shape = (Batch Size, Max label len, Signal) 
        x = self.linear2(x)

        # 在计算损失时ctc-loss会自动进行softmax,所以在预测模式中需额外做softmax获取标签概率
        if self.is_infer:
            # 输出层 - Shape = (Batch Size, Max label len, Prob) 
            x = paddle.nn.functional.softmax(x)
            # 转换为标签
            x = paddle.argmax(x, axis=-1)
        return x

四、训练准备

4.1 定义label输入以及超参数

监督训练需要定义label,预测则不需要该步骤。

# 数据集路径设置
DATA_PATH = "./data/OCR_Dataset"
# 训练轮数
EPOCH = 10
# 每批次数据大小
BATCH_SIZE = 16

label_define = paddle.static.InputSpec(shape=[-1, LABEL_MAX_LEN],
                                    dtype="int32",
                                    name="label")

4.2 定义CTC Loss

了解CTC解码器效果后,我们需要在训练中让模型尽可能接近这种类型输出形式,那么我们需要定义一个CTC Loss来计算模型损失。不必担心,在飞桨框架中内置了多种Loss,无需手动复现即可完成损失计算。

使用文档:CTCLoss

class CTCLoss(paddle.nn.Layer):
    def __init__(self):
        """
        定义CTCLoss
        """
        super().__init__()

    def forward(self, ipt, label):
        input_lengths = paddle.full(shape=[BATCH_SIZE, 1],fill_value=LABEL_MAX_LEN + 4,dtype= "int64")
        label_lengths = paddle.full(shape=[BATCH_SIZE, 1],fill_value=LABEL_MAX_LEN,dtype= "int64")
        # 按文档要求进行转换dim顺序
        ipt = paddle.tensor.transpose(ipt, [1, 0, 2])
        # 计算loss
        loss = paddle.nn.functional.ctc_loss(ipt, label, input_lengths, label_lengths, blank=10)
        return loss

4.3 实例化模型并配置优化策略

# 实例化模型
model = paddle.Model(Net(), inputs=input_define, labels=label_define)
# 定义优化器
optimizer = paddle.optimizer.Adam(learning_rate=0.0001, parameters=model.parameters())

# 为模型配置运行环境并设置该优化策略
model.prepare(optimizer=optimizer,
                loss=CTCLoss())

五、开始训练

# 执行训练
model.fit(train_data=Reader(DATA_PATH),
            eval_data=Reader(DATA_PATH, is_val=True),
            batch_size=BATCH_SIZE,
            epochs=EPOCH,
            save_dir="output/",
            save_freq=1,
            verbose=1)
The loss value printed in the log is the current step, and the metric is the average value of previous steps.
Epoch 1/10
step 529/529 [==============================] - loss: 0.0891 - 9ms/step         
save checkpoint at /home/aistudio/output/0
Eval begin...
step 63/63 [==============================] - loss: 0.0830 - 6ms/step        
Eval samples: 1000
Epoch 2/10
step 529/529 [==============================] - loss: 0.0199 - 10ms/step        
save checkpoint at /home/aistudio/output/1
Eval begin...
step 63/63 [==============================] - loss: 0.0353 - 6ms/step        
Eval samples: 1000
Epoch 3/10
step 529/529 [==============================] - loss: 0.2133 - 10ms/step        
save checkpoint at /home/aistudio/output/2
Eval begin...
step 63/63 [==============================] - loss: 0.0259 - 6ms/step        
Eval samples: 1000
Epoch 4/10
step 529/529 [==============================] - loss: 0.0133 - 9ms/step        
save checkpoint at /home/aistudio/output/3
Eval begin...
step 63/63 [==============================] - loss: 0.0210 - 6ms/step        
Eval samples: 1000
Epoch 5/10
step 529/529 [==============================] - loss: 0.0110 - 10ms/step        
save checkpoint at /home/aistudio/output/4
Eval begin...
step 63/63 [==============================] - loss: 0.0130 - 5ms/step        
Eval samples: 1000
Epoch 6/10
step 529/529 [==============================] - loss: 0.0150 - 9ms/step         
save checkpoint at /home/aistudio/output/5
Eval begin...
step 63/63 [==============================] - loss: 0.0111 - 6ms/step        
Eval samples: 1000
Epoch 7/10
step 529/529 [==============================] - loss: 0.0039 - 9ms/step        
save checkpoint at /home/aistudio/output/6
Eval begin...
step 63/63 [==============================] - loss: 0.0093 - 6ms/step        
Eval samples: 1000
Epoch 8/10
step 529/529 [==============================] - loss: 0.0100 - 9ms/step         
save checkpoint at /home/aistudio/output/7
Eval begin...
step 63/63 [==============================] - loss: 0.0059 - 5ms/step        
Eval samples: 1000
Epoch 9/10
step 529/529 [==============================] - loss: 0.0096 - 9ms/step        
save checkpoint at /home/aistudio/output/8
Eval begin...
step 63/63 [==============================] - loss: 0.0061 - 5ms/step        
Eval samples: 1000
Epoch 10/10
step 529/529 [==============================] - loss: 0.0066 - 10ms/step        
save checkpoint at /home/aistudio/output/9
Eval begin...
step 63/63 [==============================] - loss: 0.0054 - 6ms/step        
Eval samples: 1000
save checkpoint at /home/aistudio/output/final

六、预测前准备

6.1 像定义训练Reader一样定义预测Reader

# 与训练近似,但不包含Label
class InferReader(Dataset):
    def __init__(self, dir_path=None, img_path=None):
        """
        数据读取Reader(预测)
        :param dir_path: 预测对应文件夹(二选一)
        :param img_path: 预测单张图片(二选一)
        """
        super().__init__()
        if dir_path:
            # 获取文件夹中所有图片路径
            self.img_names = [i for i in os.listdir(dir_path) if os.path.splitext(i)[1] == ".jpg"]
            self.img_paths = [os.path.join(dir_path, i) for i in self.img_names]
        elif img_path:
            self.img_names = [os.path.split(img_path)[1]]
            self.img_paths = [img_path]
        else:
            raise Exception("请指定需要预测的文件夹或对应图片路径")

    def get_names(self):
        """
        获取预测文件名顺序 
        """
        return self.img_names

    def __getitem__(self, index):
        # 获取图像路径
        file_path = self.img_paths[index]
        # 使用Pillow来读取图像数据并转成Numpy格式
        img = Image.open(file_path)
        img = np.array(img, dtype="float32").reshape((IMAGE_SHAPE_C, IMAGE_SHAPE_H, IMAGE_SHAPE_W)) / 255
        return img

    def __len__(self):
        return len(self.img_paths)

6.2 参数设置

# 待预测目录 - 可在测试数据集中挑出\b3张图像放在该目录中进行推理
INFER_DATA_PATH = "./sample_img"
# 训练后存档点路径 - final 代表最终训练所得模型
CHECKPOINT_PATH = "./output/final.pdparams"
# 每批次处理数量
BATCH_SIZE = 32

6.3 展示待预测数据

import matplotlib.pyplot as plt
plt.figure(figsize=(10, 10))
sample_idxs = np.random.choice(50000, size=25, replace=False)

for img_id, img_name in enumerate(os.listdir(INFER_DATA_PATH)):
    plt.subplot(1, 3, img_id + 1)
    plt.xticks([])
    plt.yticks([])
    im = Image.open(os.path.join(INFER_DATA_PATH, img_name))
    plt.imshow(im, cmap=plt.cm.binary)
    plt.xlabel("Img name: " + img_name)
plt.show()

png

七、开始预测

飞桨2.1 CTC Decoder 相关API正在迁移中,本节暂时使用简易版解码器。

# 编写简易版解码器
def ctc_decode(text, blank=10):
    """
    简易CTC解码器
    :param text: 待解码数据
    :param blank: 分隔符索引值
    :return: 解码后数据
    """
    result = []
    cache_idx = -1
    for char in text:
        if char != blank and char != cache_idx:
            result.append(char)
        cache_idx = char
    return result


# 实例化推理模型
model = paddle.Model(Net(is_infer=True), inputs=input_define)
# 加载训练好的参数模型
model.load(CHECKPOINT_PATH)
# 设置运行环境
model.prepare()

# 加载预测Reader
infer_reader = InferReader(INFER_DATA_PATH)
img_names = infer_reader.get_names()
results = model.predict(infer_reader, batch_size=BATCH_SIZE)
index = 0
for text_batch in results[0]:
    for prob in text_batch:
        out = ctc_decode(prob, blank=10)
        print(f"文件名:{img_names[index]},推理结果为:{out}")
        index += 1
WARNING: Detect dataset only contains single fileds, return format changed since Paddle 2.1. In Paddle <= 2.0, DataLoader add a list surround output data(e.g. return [data]), and in Paddle >= 2.1, DataLoader return the single filed directly (e.g. return data). For example, in following code: 

import numpy as np
from paddle.io import DataLoader, Dataset

class RandomDataset(Dataset):
    def __getitem__(self, idx):
        data = np.random.random((2, 3)).astype('float32')

        return data

    def __len__(self):
        return 10

dataset = RandomDataset()
loader = DataLoader(dataset, batch_size=1)
data = next(loader())

In Paddle <= 2.0, data is in format '[Tensor(shape=(1, 2, 3), dtype=float32)]', and in Paddle >= 2.1, data is in format 'Tensor(shape=(1, 2, 3), dtype=float32)'



Predict begin...
step 1/1 [==============================] - 10ms/step
Predict samples: 3
文件名:9451.jpg,推理结果为:[3, 4, 6, 3]
文件名:9452.jpg,推理结果为:[0, 3, 0, 0]
文件名:9450.jpg,推理结果为:[8, 2, 0, 5]