模型量化-动态离线量化¶
本文首先简单介绍动态离线量化,然后说明产出量化模型,最后阐述量化模型预测。
1 简介¶
动态离线量化,将模型中特定OP的权重从FP32类型量化成INT8/16类型。
该量化模型有两种预测方式:第一种是反量化预测方式,即是首先将INT8/16类型的权重反量化成FP32类型,然后再使用FP32浮运算运算进行预测;第二种量化预测方式,即是预测中动态计算量化OP输入的量化信息,基于量化的输入和权重进行INT8整形运算。
注意,目前PaddleLite仅仅支持第一种反量化预测方式。
使用条件:
有训练好的预测模型
使用步骤:
产出量化模型:使用PaddlePaddle调用动态离线量化离线量化接口,产出量化模型
量化模型预测:使用PaddleLite加载量化模型进行预测推理
优点:
权重量化成INT16类型,模型精度不受影响,模型大小为原始的1/2
权重量化成INT8类型,模型精度会受到影响,模型大小为原始的1/4
缺点:
目前只支持反量化预测方式,主要可以减小模型大小,对特定加载权重费时的模型可以起到一定加速效果
2 产出量化模型¶
目前该方法还没有在PaddleSlim中集成,大家可以使用PaddlePaddle调用动态离线量化接口,得到量化模型。
2.2 准备模型¶
准备已经训练好的FP32预测模型,即 save_inference_model()
保存的模型。
2.3 调用动态离线量化¶
对于调用动态离线量化,首先给出一个例子。
from paddle.fluid.contrib.slim.quantization import WeightQuantization
model_dir = path/to/fp32_model_params
save_model_dir = path/to/save_model_path
weight_quant = WeightQuantization(model_dir=model_dir)
weight_quant.quantize_weight_to_int(save_model_dir=save_model_dir,
weight_bits=8,
quantizable_op_type=['conv2d', 'mul'],
weight_quantize_type="channel_wise_abs_max",
generate_test_model=False)
执行完成后,可以在 save_model_dir/quantized_model
目录下得到量化模型。
对于调用动态离线量化,以下对api接口进行详细介绍。
class WeightQuantization(model_dir, model_filename=None, params_filename=None)
参数说明如下:
model_dir(str):待量化模型的路径,其中保存模型文件和权重文件。
model_filename(str, optional):待量化模型的模型文件名,如果模型文件名不是
__model__
,则需要使用model_filename设置模型文件名。params_filename(str, optional):待量化模型的权重文件名,如果所有权重保存成一个文件,则需要使用params_filename设置权重文件名。
WeightQuantization.quantize_weight_to_int(self,
save_model_dir,
save_model_filename=None,
save_params_filename=None,
quantizable_op_type=["conv2d", "mul"],
weight_bits=8,
weight_quantize_type="channel_wise_abs_max",
generate_test_model=False,
threshold_rate=0.0)
参数说明如下:
save_model_dir(str):保存量化模型的路径。
save_model_filename(str, optional):如果save_model_filename等于None,则模型的网络结构保存到__model__文件,如果save_model_filename不等于None,则模型的网络结构保存到特定的文件。默认为None。
save_params_filename(str, optional):如果save_params_filename等于None,则模型的参数分别保存到一系列文件中,如果save_params_filename不等于None,则模型的参数会保存到一个文件中,文件名为设置的save_params_filename。默认为None。
quantizable_op_type(list[str]): 需要量化的op类型,默认是
['conv2d', 'mul']
,列表中的值可以是任意支持量化的op类型['conv2d', 'depthwise_conv2d', 'mul']
。一般不对depthwise_conv2d
量化,因为对减小模型大小收益不大,同时可能影响模型精度。weight_bits(int, optional):权重量化保存的比特数,可以是8~16,一般设置为8/16,默认为8。量化为8bit,模型体积最多可以减小4倍,可能存在微小的精度损失。量化成16bit,模型大小最多可以减小2倍,基本没有精度损失。
weight_quantize_type(str, optional): 权重量化的方式,支持
channel_wise_abs_max
和abs_max
,一般都是channel_wise_abs_max
,量化模型精度损失小。generate_test_model(bool, optional): 是否产出测试模型,用于测试量化模型部署时的精度。测试模型保存在
save_model_dir/test_model
目录下,可以和FP32模型一样使用Fluid加载测试,但是该模型不能用于预测端部署。
3 量化模型预测¶
目前,对于动态离线量化产出的量化模型,只能使用PaddleLite进行预测部署。
很简单,首先使用PaddleLite提供的模型转换工具(opt)将量化模型转换成移动端预测的模型,然后加载转换后的模型进行预测部署。
注意,PaddleLite 2.3版本才支持动态离线量化产出的量化,所以转换工具和预测库必须是2.3及之后的版本。
3.1 模型转换¶
参考模型转换准备模型转换工具,建议从Release页面下载。
参考模型转换使用模型转换工具。 比如在安卓手机ARM端进行预测,模型转换的命令为:
./opt --model_dir=./mobilenet_v1_quant \
--optimize_out_type=naive_buffer \
--optimize_out=mobilenet_v1_quant_opt \
--valid_targets=arm
3.2 量化模型预测¶
和FP32模型一样,转换后的量化模型可以在Android/IOS APP中加载预测,建议参考C++ Demo、Java Demo、Android/IOS Demo。