FastDeploy  latest
Fast & Easy to Deploy!
Public Member Functions | Public Attributes | List of all members
fastdeploy::vision::keypointdetection::PPTinyPose Class Reference

PPTinyPose model object used when to load a PPTinyPose model exported by PaddleDetection. More...

#include <pptinypose.h>

Inheritance diagram for fastdeploy::vision::keypointdetection::PPTinyPose:
Inheritance graph
[legend]
Collaboration diagram for fastdeploy::vision::keypointdetection::PPTinyPose:
Collaboration graph
[legend]

Public Member Functions

 PPTinyPose (const std::string &model_file, const std::string &params_file, const std::string &config_file, const RuntimeOption &custom_option=RuntimeOption(), const ModelFormat &model_format=ModelFormat::PADDLE)
 Set path of model file and configuration file, and the configuration of runtime. More...
 
std::string ModelName () const
 Get model's name.
 
bool Predict (cv::Mat *im, KeyPointDetectionResult *result)
 Predict the keypoint detection result for an input image. More...
 
bool Predict (cv::Mat *im, KeyPointDetectionResult *result, const DetectionResult &detection_result)
 Predict the keypoint detection result with given detection result for an input image. More...
 
void DisableNormalize ()
 This function will disable normalize in preprocessing step.
 
void DisablePermute ()
 This function will disable hwc2chw in preprocessing step.
 
- Public Member Functions inherited from fastdeploy::FastDeployModel
virtual bool Infer (std::vector< FDTensor > &input_tensors, std::vector< FDTensor > *output_tensors)
 Inference the model by the runtime. This interface is included in the Predict() function, so we don't call Infer() directly in most common situation.
 
virtual bool Infer ()
 Inference the model by the runtime. This interface is using class member reused_input_tensors_ to do inference and writing results to reused_output_tensors_.
 
virtual int NumInputsOfRuntime ()
 Get number of inputs for this model.
 
virtual int NumOutputsOfRuntime ()
 Get number of outputs for this model.
 
virtual TensorInfo InputInfoOfRuntime (int index)
 Get input information for this model.
 
virtual TensorInfo OutputInfoOfRuntime (int index)
 Get output information for this model.
 
virtual bool Initialized () const
 Check if the model is initialized successfully.
 
virtual void EnableRecordTimeOfRuntime ()
 This is a debug interface, used to record the time of runtime (backend + h2d + d2h) More...
 
virtual void DisableRecordTimeOfRuntime ()
 Disable to record the time of runtime, see EnableRecordTimeOfRuntime() for more detail.
 
virtual std::map< std::string, float > PrintStatisInfoOfRuntime ()
 Print the statistic information of runtime in the console, see function EnableRecordTimeOfRuntime() for more detail.
 
virtual bool EnabledRecordTimeOfRuntime ()
 Check if the EnableRecordTimeOfRuntime() method is enabled.
 
virtual double GetProfileTime ()
 Get profile time of Runtime after the profile process is done.
 
virtual void ReleaseReusedBuffer ()
 Release reused input/output buffers.
 

Public Attributes

bool use_dark = true
 Whether using Distribution-Aware Coordinate Representation for Human Pose Estimation(DARK for short) in postprocess, default is true.
 
- Public Attributes inherited from fastdeploy::FastDeployModel
std::vector< Backendvalid_cpu_backends = {Backend::ORT}
 Model's valid cpu backends. This member defined all the cpu backends have successfully tested for the model.
 
std::vector< Backendvalid_gpu_backends = {Backend::ORT}
 
std::vector< Backendvalid_ipu_backends = {}
 
std::vector< Backendvalid_timvx_backends = {}
 
std::vector< Backendvalid_directml_backends = {}
 
std::vector< Backendvalid_ascend_backends = {}
 
std::vector< Backendvalid_kunlunxin_backends = {}
 
std::vector< Backendvalid_rknpu_backends = {}
 
std::vector< Backendvalid_sophgonpu_backends = {}
 

Detailed Description

PPTinyPose model object used when to load a PPTinyPose model exported by PaddleDetection.

Constructor & Destructor Documentation

◆ PPTinyPose()

fastdeploy::vision::keypointdetection::PPTinyPose::PPTinyPose ( const std::string &  model_file,
const std::string &  params_file,
const std::string &  config_file,
const RuntimeOption custom_option = RuntimeOption(),
const ModelFormat model_format = ModelFormat::PADDLE 
)

Set path of model file and configuration file, and the configuration of runtime.

Parameters
[in]model_filePath of model file, e.g pptinypose/model.pdmodel
[in]params_filePath of parameter file, e.g pptinypose/model.pdiparams, if the model format is ONNX, this parameter will be ignored
[in]config_filePath of configuration file for deployment, e.g pptinypose/infer_cfg.yml
[in]custom_optionRuntimeOption for inference, the default will use cpu, and choose the backend defined in valid_cpu_backends
[in]model_formatModel format of the loaded model, default is Paddle format

Member Function Documentation

◆ Predict() [1/2]

bool fastdeploy::vision::keypointdetection::PPTinyPose::Predict ( cv::Mat *  im,
KeyPointDetectionResult result 
)

Predict the keypoint detection result for an input image.

Parameters
[in]imThe input image data, comes from cv::imread()
[in]resultThe output keypoint detection result will be writen to this structure
Returns
true if the keypoint prediction successed, otherwise false

◆ Predict() [2/2]

bool fastdeploy::vision::keypointdetection::PPTinyPose::Predict ( cv::Mat *  im,
KeyPointDetectionResult result,
const DetectionResult detection_result 
)

Predict the keypoint detection result with given detection result for an input image.

Parameters
[in]imThe input image data, comes from cv::imread()
[in]resultThe output keypoint detection result will be writen to this structure
[in]detection_resultThe structure strores pedestrian detection result, which is used to crop image for multi-persons keypoint detection
Returns
true if the keypoint prediction successed, otherwise false

The documentation for this class was generated from the following files: