FastDeploy
latest
Fast & Easy to Deploy!
|
PPTinyPose model object used when to load a PPTinyPose model exported by PaddleDetection. More...
#include <pptinypose.h>
Public Member Functions | |
PPTinyPose (const std::string &model_file, const std::string ¶ms_file, const std::string &config_file, const RuntimeOption &custom_option=RuntimeOption(), const ModelFormat &model_format=ModelFormat::PADDLE) | |
Set path of model file and configuration file, and the configuration of runtime. More... | |
std::string | ModelName () const |
Get model's name. | |
bool | Predict (cv::Mat *im, KeyPointDetectionResult *result) |
Predict the keypoint detection result for an input image. More... | |
bool | Predict (cv::Mat *im, KeyPointDetectionResult *result, const DetectionResult &detection_result) |
Predict the keypoint detection result with given detection result for an input image. More... | |
void | DisableNormalize () |
This function will disable normalize in preprocessing step. | |
void | DisablePermute () |
This function will disable hwc2chw in preprocessing step. | |
Public Member Functions inherited from fastdeploy::FastDeployModel | |
virtual bool | Infer (std::vector< FDTensor > &input_tensors, std::vector< FDTensor > *output_tensors) |
Inference the model by the runtime. This interface is included in the Predict() function, so we don't call Infer() directly in most common situation. | |
virtual bool | Infer () |
Inference the model by the runtime. This interface is using class member reused_input_tensors_ to do inference and writing results to reused_output_tensors_. | |
virtual int | NumInputsOfRuntime () |
Get number of inputs for this model. | |
virtual int | NumOutputsOfRuntime () |
Get number of outputs for this model. | |
virtual TensorInfo | InputInfoOfRuntime (int index) |
Get input information for this model. | |
virtual TensorInfo | OutputInfoOfRuntime (int index) |
Get output information for this model. | |
virtual bool | Initialized () const |
Check if the model is initialized successfully. | |
virtual void | EnableRecordTimeOfRuntime () |
This is a debug interface, used to record the time of runtime (backend + h2d + d2h) More... | |
virtual void | DisableRecordTimeOfRuntime () |
Disable to record the time of runtime, see EnableRecordTimeOfRuntime() for more detail. | |
virtual std::map< std::string, float > | PrintStatisInfoOfRuntime () |
Print the statistic information of runtime in the console, see function EnableRecordTimeOfRuntime() for more detail. | |
virtual bool | EnabledRecordTimeOfRuntime () |
Check if the EnableRecordTimeOfRuntime() method is enabled. | |
virtual double | GetProfileTime () |
Get profile time of Runtime after the profile process is done. | |
virtual void | ReleaseReusedBuffer () |
Release reused input/output buffers. | |
Public Attributes | |
bool | use_dark = true |
Whether using Distribution-Aware Coordinate Representation for Human Pose Estimation(DARK for short) in postprocess, default is true. | |
Public Attributes inherited from fastdeploy::FastDeployModel | |
std::vector< Backend > | valid_cpu_backends = {Backend::ORT} |
Model's valid cpu backends. This member defined all the cpu backends have successfully tested for the model. | |
std::vector< Backend > | valid_gpu_backends = {Backend::ORT} |
std::vector< Backend > | valid_ipu_backends = {} |
std::vector< Backend > | valid_timvx_backends = {} |
std::vector< Backend > | valid_directml_backends = {} |
std::vector< Backend > | valid_ascend_backends = {} |
std::vector< Backend > | valid_kunlunxin_backends = {} |
std::vector< Backend > | valid_rknpu_backends = {} |
std::vector< Backend > | valid_sophgonpu_backends = {} |
PPTinyPose model object used when to load a PPTinyPose model exported by PaddleDetection.
fastdeploy::vision::keypointdetection::PPTinyPose::PPTinyPose | ( | const std::string & | model_file, |
const std::string & | params_file, | ||
const std::string & | config_file, | ||
const RuntimeOption & | custom_option = RuntimeOption() , |
||
const ModelFormat & | model_format = ModelFormat::PADDLE |
||
) |
Set path of model file and configuration file, and the configuration of runtime.
[in] | model_file | Path of model file, e.g pptinypose/model.pdmodel |
[in] | params_file | Path of parameter file, e.g pptinypose/model.pdiparams, if the model format is ONNX, this parameter will be ignored |
[in] | config_file | Path of configuration file for deployment, e.g pptinypose/infer_cfg.yml |
[in] | custom_option | RuntimeOption for inference, the default will use cpu, and choose the backend defined in valid_cpu_backends |
[in] | model_format | Model format of the loaded model, default is Paddle format |
bool fastdeploy::vision::keypointdetection::PPTinyPose::Predict | ( | cv::Mat * | im, |
KeyPointDetectionResult * | result | ||
) |
Predict the keypoint detection result for an input image.
[in] | im | The input image data, comes from cv::imread() |
[in] | result | The output keypoint detection result will be writen to this structure |
bool fastdeploy::vision::keypointdetection::PPTinyPose::Predict | ( | cv::Mat * | im, |
KeyPointDetectionResult * | result, | ||
const DetectionResult & | detection_result | ||
) |
Predict the keypoint detection result with given detection result for an input image.
[in] | im | The input image data, comes from cv::imread() |
[in] | result | The output keypoint detection result will be writen to this structure |
[in] | detection_result | The structure strores pedestrian detection result, which is used to crop image for multi-persons keypoint detection |