CosineAnnealingDecay¶
- class paddle.optimizer.lr. CosineAnnealingDecay ( learning_rate, T_max, eta_min=0, last_epoch=- 1, verbose=False ) [源代码] ¶
该接口使用 cosine annealing
的策略来动态调整学习率。
ηt=ηmin+12(ηmax−ηmin)(1+cos(TcurTmaxπ)),Tcur≠(2k+1)Tmax;ηt+1=ηt+12(ηmax−ηmin)(1−cos(1Tmaxπ)),Tcur=(2k+1)Tmax.
ηmax 的初始值为 learning_rate
, Tcur 是 SGDR(重启训练 SGD)训练过程中的当前训练轮数。SGDR 的训练方法可以参考论文, 这里只是实现了 cosine annealing
动态学习率,热启训练部分没有实现。
相关论文:SGDR: Stochastic Gradient Descent with Warm Restarts
参数¶
learning_rate (float) - 初始学习率,也就是公式中的 ηmax,数据类型为 Python float。
T_max (float|int) - 训练的上限轮数,是余弦衰减周期的一半。
eta_min (float|int,可选) - 学习率的最小值,即公式中的 ηmin。默认值为 0。
last_epoch (int,可选) - 上一轮的轮数,重启训练时设置为上一轮的 epoch 数。默认值为 -1,则为初始学习率。
verbose (bool,可选) - 如果是
True
,则在每一轮更新时在标准输出 stdout 输出一条信息。默认值为False
。
返回¶
用于调整学习率的 CosineAnnealingDecay
实例对象。
代码示例¶
import paddle
import numpy as np
# train on default dynamic graph mode
linear = paddle.nn.Linear(10, 10)
scheduler = paddle.optimizer.lr.CosineAnnealingDecay(learning_rate=0.5, T_max=10, verbose=True)
sgd = paddle.optimizer.SGD(learning_rate=scheduler, parameters=linear.parameters())
for epoch in range(20):
for batch_id in range(5):
x = paddle.uniform([10, 10])
out = linear(x)
loss = paddle.mean(out)
loss.backward()
sgd.step()
sgd.clear_gradients()
scheduler.step() # If you update learning rate each step
# scheduler.step() # If you update learning rate each epoch
# train on static graph mode
paddle.enable_static()
main_prog = paddle.static.Program()
start_prog = paddle.static.Program()
with paddle.static.program_guard(main_prog, start_prog):
x = paddle.static.data(name='x', shape=[None, 4, 5])
y = paddle.static.data(name='y', shape=[None, 4, 5])
z = paddle.static.nn.fc(x, 100)
loss = paddle.mean(z)
scheduler = paddle.optimizer.lr.CosineAnnealingDecay(learning_rate=0.5, T_max=10, verbose=True)
sgd = paddle.optimizer.SGD(learning_rate=scheduler)
sgd.minimize(loss)
exe = paddle.static.Executor()
exe.run(start_prog)
for epoch in range(20):
for batch_id in range(5):
out = exe.run(
main_prog,
feed={
'x': np.random.randn(3, 4, 5).astype('float32'),
'y': np.random.randn(3, 4, 5).astype('float32')
},
fetch_list=loss.name)
scheduler.step() # If you update learning rate each step
# scheduler.step() # If you update learning rate each epoch
方法¶
step(epoch=None)¶
step 函数需要在优化器的 optimizer.step() 函数之后调用,调用之后将会根据 epoch 数来更新学习率,更新之后的学习率将会在优化器下一轮更新参数时使用。
参数
epoch (int,可选)- 指定具体的 epoch 数。默认值 None,此时将会从-1 自动累加
epoch
数。
返回
无。
代码示例:¶
参照上述示例代码。