DataLoader¶
- class paddle.io. DataLoader ( dataset, feed_list=None, places=None, return_list=False, batch_sampler=None, batch_size=1, shuffle=False, drop_last=False, collate_fn=None, num_workers=0, use_buffer_reader=True, use_shared_memory=True, prefetch_factor=2, timeout=0, worker_init_fn=None ) [源代码] ¶
DataLoader 返回一个迭代器,该迭代器根据 batch_sampler
给定的顺序迭代一次给定的 dataset
DataLoader 支持单进程和多进程的数据加载方式,当 num_workers
大于 0 时,将使用多进程方式异步加载数据。
DataLoader 当前支持 map-style
和 iterable-style
的数据集,map-style
的数据集可通过下标索引样本,请参考 paddle.io.Dataset
; iterable-style
数据集只能迭代式地获取样本,类似 Python 迭代器,请参考 paddle.io.IterableDataset
。
注解
当前还不支持在子进程中进行 GPU Tensor 的操作,请不要在子进程流程中使用 GPU Tensor,例如 dataset
中的预处理,collate_fn
等,numpy array
和 CPU Tensor 操作已支持。
batch_sampler
请参考 paddle.io.BatchSampler
禁用自动组 batch
在如 NLP 等任务中,用户需求自定义组 batch 的方式,不希望 DataLoader
自动组 batch, DataLoader
支持在 batch_size
和 batch_sampler
均为 None 的时候禁用自动组 batch 功能,此时需求从 dataset
中获取的数据为已经组好 batch 的数据,该数据将不做任何处理直接传到 collate_fn
或 default_collate_fn
中。
注解
当禁用自动组 batch 时,default_collate_fn
将不对输入数据做任何处理。
参数¶
dataset (Dataset) - DataLoader 从此参数给定数据集中加载数据,此参数必须是
paddle.io.Dataset
或paddle.io.IterableDataset
的一个子类实例。feed_list (list(Tensor)|tuple(Tensor),可选) - feed 变量列表,由
paddle.static.data()
创建。当return_list
为 False 时,此参数必须设置。默认值为 None。places (list(Place)|tuple(Place),可选) - 数据需要放置到的 Place 列表。在静态图和动态图模式中,此参数均必须设置。在动态图模式中,此参数列表长度必须是 1。默认值为 None。
return_list (bool,可选) - 每个设备上的数据是否以 list 形式返回。若 return_list = False,每个设备上的返回数据均是 str -> Tensor 的映射表,其中映射表的 key 是每个输入变量的名称。若 return_list = True,则每个设备上的返回数据均是 list(Tensor)。在动态图模式下,此参数必须为 True。默认值为 False。
batch_sampler (BatchSampler,可选) -
paddle.io.BatchSampler
或其子类的实例,DataLoader 通过batch_sampler
产生的 mini-batch 索引列表来dataset
中索引样本并组成 mini-batch。默认值为 None。batch_size (int|None,可选) - 每 mini-batch 中样本个数,为
batch_sampler
的替代参数,若batch_sampler
未设置,会根据batch_size
shuffle
drop_last
创建一个paddle.io.BatchSampler
。默认值为 1。shuffle (bool,可选) - 生成 mini-batch 索引列表时是否对索引打乱顺序,为
batch_sampler
的替代参数,若batch_sampler
未设置,会根据batch_size
shuffle
drop_last
创建一个paddle.io.BatchSampler
。默认值为 False。drop_last (bool,可选) - 是否丢弃因数据集样本数不能被
batch_size
整除而产生的最后一个不完整的 mini-batch,为batch_sampler
的替代参数,若batch_sampler
未设置,会根据batch_size
shuffle
drop_last
创建一个paddle.io.BatchSampler
。默认值为 False。collate_fn (callable,可选) - 通过此参数指定如果将样本列表组合为 mini-batch 数据,当
collate_fn
为 None 时,默认为将样本个字段在第 0 维上堆叠(同np.stack(..., axis=0)
)为 mini-batch 的数据。默认值为 None。num_workers (int,可选) - 用于加载数据的子进程个数,若为 0 即为不开启子进程,在主进程中进行数据加载。默认值为 0。
use_buffer_reader (bool,可选) - 是否使用缓存读取器。若
use_buffer_reader
为 True,DataLoader 会异步地预读取一定数量(默认读取下一个)的 mini-batch 的数据,可加速数据读取过程,但同时会占用少量的 CPU/GPU 存储,即一个 batch 输入数据的存储空间。默认值为 True。prefetch_factor (int,可选) - 缓存的 mini-batch 的个数。若
use_buffer_reader
为 True,DataLoader 会异步地预读取prefetch_factor
个 mini-batch。默认值为 2。use_shared_memory (bool,可选) - 是否使用共享内存来提升子进程将数据放入进程间队列的速度,该参数尽在多进程模式下有效(即
num_workers > 0
),请确认机器上有足够的共享内存空间(如 Linux 系统下/dev/shm/
目录空间大小)再设置此参数。默认为 True。timeout (int,可选) - 从子进程输出队列获取 mini-batch 数据的超时时间。默认值为 0。
worker_init_fn (callable,可选) - 子进程初始化函数,此函数会被子进程初始化时被调用,并传递
worker id
作为参数。默认值为 None。
返回¶
DataLoader,迭代 dataset
数据的迭代器,迭代器返回的数据中的每个元素都是一个 Tensor。
代码示例¶
import numpy as np
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddle.io import Dataset, BatchSampler, DataLoader
BATCH_NUM = 20
BATCH_SIZE = 16
EPOCH_NUM = 4
IMAGE_SIZE = 784
CLASS_NUM = 10
USE_GPU = False # whether use GPU to run model
# define a random dataset
class RandomDataset(Dataset):
def __init__(self, num_samples):
self.num_samples = num_samples
def __getitem__(self, idx):
image = np.random.random([IMAGE_SIZE]).astype('float32')
label = np.random.randint(0, CLASS_NUM - 1, (1, )).astype('int64')
return image, label
def __len__(self):
return self.num_samples
dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)
class SimpleNet(nn.Layer):
def __init__(self):
super().__init__()
self.fc = nn.Linear(IMAGE_SIZE, CLASS_NUM)
def forward(self, image, label=None):
return self.fc(image)
simple_net = SimpleNet()
opt = paddle.optimizer.SGD(learning_rate=1e-3,
parameters=simple_net.parameters())
loader = DataLoader(dataset,
batch_size=BATCH_SIZE,
shuffle=True,
drop_last=True,
num_workers=2)
for e in range(EPOCH_NUM):
for i, (image, label) in enumerate(loader()):
out = simple_net(image)
loss = F.cross_entropy(out, label)
avg_loss = paddle.mean(loss)
avg_loss.backward()
opt.minimize(avg_loss)
simple_net.clear_gradients()
print("Epoch {} batch {}: loss = {}".format(e, i, np.mean(loss.numpy())))
方法¶
from_generator(feed_list=None, capacity=None, use_double_buffer=True, iterable=True, return_list=False, use_multiprocess=False, drop_last=True)¶
警告
这个 API 将在未来版本废弃,推荐使用支持多进程并发加速的 paddle.io.DataLoader
注解
框架保证 DataLoader 的数据加载顺序与用户提供的数据源读取顺序一致。
创建一个 DataLoader 对象用于加载 Python 生成器产生的数据。数据会由 Python 线程预先读取,并异步送入一个队列中。
本方法创建的 DataLoader 对象提供了 3 个方法设置数据源,分别是 set_sample_generator
, set_sample_list_generator
和 set_batch_generator
。请查阅下述示例代码了解它们的使用方法。
如果 iterable = True,本方法创建的 DataLoader 对象是一个 Python 生成器,可以 for-range 的方法循环迭代。
如果 iterable = False,本方法创建的 DataLoader 对象提供 start()
和 reset()
方法控制数据读取过程。
参数
feed_list (list(Tensor)|tuple(Tensor)) - feed 变量列表,由
paddle.static.data()
创建。capacity (int) - DataLoader 对象内部维护队列的容量大小。单位是 batch 数量。若 reader 读取速度较快,建议设置较大的 capacity 值。
use_double_buffer (bool,可选) - 是否使用
double_buffer_reader
。若 use_double_buffer=True,DataLoader 会异步地预读取下一个 batch 的数据,可加速数据读取过程,但同时会占用少量的 CPU/GPU 存储,即一个 batch 输入数据的存储空间。iterable (bool,可选) - 所创建的 DataLoader 对象是否可迭代。
return_list (bool,可选) - 每个设备上的数据是否以 list 形式返回。仅在 iterable = True 模式下有效。若 return_list = False,每个设备上的返回数据均是 str -> Tensor 的映射表,其中映射表的 key 是每个输入变量的名称。若 return_list = True,则每个设备上的返回数据均是 list(Tensor)。推荐在静态图模式下使用 return_list = False,在动态图模式下使用 return_list = True。
use_multiprocess (bool,可选) - 设置是否是用多进程加速动态图的数据载入过程。注意:该参数的设置仅在动态图模式下有效,在静态图模式下,该参数设置与否均无任何影响。默认值为 False。
drop_last (bool,可选):是否丢弃最后的不足 CPU/GPU 设备数的批次。默认值为 True。在网络训练时,用户不能设置 drop_last=False,此时所有 CPU/GPU 设备均应从 DataLoader 中读取到数据。在网络预测时,用户可以设置 drop_last=False,此时最后不足 CPU/GPU 设备数的批次可以进行预测。
返回
被创建的 DataLoader 对象。
代码示例 1
'''
Example in static graph mode
'''
import numpy as np
import paddle
import paddle.static as static
import paddle.nn.functional as F
BATCH_NUM = 10
BATCH_SIZE = 16
EPOCH_NUM = 4
CLASS_NUM = 10
ITERABLE = True # whether the created DataLoader object is iterable
USE_GPU = False # whether to use GPU
DATA_FORMAT = 'batch_generator' # data format of data source user provides
paddle.enable_static()
def simple_net(image, label):
fc_tmp = static.nn.fc(image, size=CLASS_NUM)
cross_entropy = F.softmax_with_cross_entropy(image, label)
loss = paddle.mean(cross_entropy)
sgd = paddle.optimizer.SGD(learning_rate=1e-3)
sgd.minimize(loss)
return loss
def get_random_images_and_labels(image_shape, label_shape):
image = np.random.random(size=image_shape).astype('float32')
label = np.random.random(size=label_shape).astype('int64')
return image, label
# If the data generator yields one sample each time,
# use DataLoader.set_sample_generator to set the data source.
def sample_generator_creator():
def __reader__():
for _ in range(BATCH_NUM * BATCH_SIZE):
image, label = get_random_images_and_labels([784], [1])
yield image, label
return __reader__
# If the data generator yield list of samples each time,
# use DataLoader.set_sample_list_generator to set the data source.
def sample_list_generator_creator():
def __reader__():
for _ in range(BATCH_NUM):
sample_list = []
for _ in range(BATCH_SIZE):
image, label = get_random_images_and_labels([784], [1])
sample_list.append([image, label])
yield sample_list
return __reader__
# If the data generator yields a batch each time,
# use DataLoader.set_batch_generator to set the data source.
def batch_generator_creator():
def __reader__():
for _ in range(BATCH_NUM):
batch_image, batch_label = get_random_images_and_labels([BATCH_SIZE, 784], [BATCH_SIZE, 1])
yield batch_image, batch_label
return __reader__
# If DataLoader is iterable, use for loop to train the network
def train_iterable(exe, prog, loss, loader):
for _ in range(EPOCH_NUM):
for data in loader():
exe.run(prog, feed=data, fetch_list=[loss])
# If DataLoader is not iterable, use start() and reset() method to control the process
def train_non_iterable(exe, prog, loss, loader):
for _ in range(EPOCH_NUM):
loader.start() # call DataLoader.start() before each epoch starts
try:
while True:
exe.run(prog, fetch_list=[loss])
except paddle.core.EOFException:
loader.reset() # call DataLoader.reset() after catching EOFException
def set_data_source(loader, places):
if DATA_FORMAT == 'sample_generator':
loader.set_sample_generator(sample_generator_creator(), batch_size=BATCH_SIZE, drop_last=True, places=places)
elif DATA_FORMAT == 'sample_list_generator':
loader.set_sample_list_generator(sample_list_generator_creator(), places=places)
elif DATA_FORMAT == 'batch_generator':
loader.set_batch_generator(batch_generator_creator(), places=places)
else:
raise ValueError('Unsupported data format')
image = static.data(name='image', shape=[None, 784], dtype='float32')
label = static.data(name='label', shape=[None, 1], dtype='int64')
# Define DataLoader
loader = paddle.io.DataLoader.from_generator(feed_list=[image, label], capacity=16, iterable=ITERABLE)
# Define network
loss = simple_net(image, label)
# Set data source of DataLoader
#
# If DataLoader is iterable, places must be given and the number of places must be the same with device number.
# - If you are using GPU, call `paddle.static.cuda_places()` to get all GPU places.
# - If you are using CPU, call `paddle.static.cpu_places()` to get all CPU places.
#
# If DataLoader is not iterable, places can be None.
places = static.cuda_places() if USE_GPU else static.cpu_places()
set_data_source(loader, places)
exe = static.Executor(places[0])
exe.run(static.default_startup_program())
prog = static.CompiledProgram(static.default_main_program())
if loader.iterable:
train_iterable(exe, prog, loss, loader)
else:
train_non_iterable(exe, prog, loss, loader)
代码示例 2
'''
Example in dynamic graph mode.
'''
import numpy as np
import paddle
import paddle.nn as nn
import paddle.optimizer as opt
import paddle.distributed as dist
BATCH_SIZE = 16
BATCH_NUM = 4
EPOCH_NUM = 4
IMAGE_SIZE = 784
CLASS_NUM = 1
USE_GPU = False # whether to use GPU
def _get_random_images_and_labels(image_shape, label_shape):
image = np.random.random(size=image_shape).astype('float32')
label = np.random.random(size=label_shape).astype('int64')
return image, label
def __reader__():
for _ in range(BATCH_NUM):
batch_image, batch_label = _get_random_images_and_labels(
[BATCH_SIZE, IMAGE_SIZE], [BATCH_SIZE, CLASS_NUM])
yield batch_image, batch_label
def random_batch_reader():
return __reader__
class LinearNet(nn.Layer):
def __init__(self):
super().__init__()
self._linear = nn.Linear(IMAGE_SIZE, CLASS_NUM)
@paddle.jit.to_static
def forward(self, x):
return self._linear(x)
# set device
paddle.set_device('gpu' if USE_GPU else 'cpu')
# create network
layer = LinearNet()
dp_layer = paddle.DataParallel(layer)
loss_fn = nn.CrossEntropyLoss()
adam = opt.Adam(learning_rate=0.001, parameters=dp_layer.parameters())
# create data loader
loader = paddle.io.DataLoader.from_generator(capacity=5)
loader.set_batch_generator(random_batch_reader())
for epoch_id in range(EPOCH_NUM):
for batch_id, (image, label) in enumerate(loader()):
out = layer(image)
loss = loss_fn(out, label)
loss.backward()
adam.step()
adam.clear_grad()
print("Epoch {} batch {}: loss = {}".format(
epoch_id, batch_id, np.mean(loss.numpy())))
代码示例 3
'''
Example of `drop_last` using in static graph multi-cards mode
'''
import paddle
import paddle.static as static
import numpy as np
import os
# We use 2 CPU cores to run inference network
os.environ['CPU_NUM'] = '2'
paddle.enable_static()
# The data source has only 3 batches, which can not be
# divided evenly to each CPU core
def batch_generator():
for i in range(3):
yield np.array([i+1]).astype('float32'),
x = static.data(name='x', shape=[None], dtype='float32')
y = x * x
def run_inference(drop_last):
loader = paddle.io.DataLoader.from_generator(feed_list=[x],
capacity=8, drop_last=drop_last)
loader.set_batch_generator(batch_generator, static.cpu_places())
exe = static.Executor(paddle.CPUPlace())
prog = static.CompiledProgram(static.default_main_program())
result = []
for data in loader():
each_ret, = exe.run(prog, feed=data, fetch_list=[y])
result.extend(each_ret)
return result
# Set drop_last to True, so that the last batch whose
# number is less than CPU core number would be discarded.
print(run_inference(drop_last=True)) # [1.0, 4.0]
# Set drop_last to False, so that the last batch whose
# number is less than CPU core number can be tested.
print(run_inference(drop_last=False)) # [1.0, 4.0, 9.0]
from_dataset(dataset, places, drop_last=True)¶
警告
这个 API 将在未来版本废弃,推荐使用支持多进程并发加速的 paddle.io.DataLoader
创建一个 DataLoader 对象用于加载 Dataset 产生的数据。目前,Dataset 仅支持 Linux 系统下使用。
参数
dataset (InMemoryDataset|QueueDataset) - Dataset 对象。
places (list(CUDAPlace)|list(CPUPlace)) - DataLoader 对象返回数据所在的 place。
drop_last (bool,可选) - 是否丢弃最后样本数量不足 batch size 的 batch。若 drop_last = True 则丢弃,若 drop_last = False 则不丢弃。
返回
被创建的 DataLoader 对象,可以 for-range 的方式循环迭代。
代码示例
import paddle
import paddle.static as static
paddle.enable_static()
image = static.data(name='image', shape=[None, 784], dtype='float32')
label = static.data(name='label', shape=[None, 1], dtype='int64')
dataset = paddle.distributed.QueueDataset()
dataset.init(
batch_size=32,
pipe_command='cat',
use_var=[image, label])
dataset.set_filelist(['a.txt', 'b.txt', 'c.txt'])
loader = paddle.io.DataLoader.from_dataset(dataset, static.cpu_places())