load

paddle.jit. load ( path, **configs ) [源代码]

将接口 paddle.jit.save 或者 paddle.static.save_inference_model 存储的模型载入为 paddle.jit.TranslatedLayer,用于预测推理或者 fine-tune 训练。

注解

如果载入的模型是通过 paddle.static.save_inference_model 存储的,在使用它进行 fine-tune 训练时会存在一些局限: 1. 命令式编程模式不支持 LoDTensor,所有原先输入变量或者参数依赖于 LoD 信息的模型暂时无法使用; 2. 所有存储模型的 feed 变量都需要被传入 Translatedlayer 的 forward 方法; 3. 原模型变量的 stop_gradient 信息已丢失且无法准确恢复; 4. 原模型参数的 trainable 信息已丢失且无法准确恢复。

参数

  • path (str) - 载入模型的路径前缀。格式为 dirname/file_prefix 或者 file_prefix

  • config (dict,可选) - 其他用于兼容的载入配置选项。这些选项将来可能被移除,如果不是必须使用,不推荐使用这些配置选项。默认为 None。目前支持以下配置选项:
    1. model_filename (str) - paddle 1.x 版本 save_inference_model 接口存储格式的预测模型文件名,原默认文件名为 __model__

    2. params_filename (str) - paddle 1.x 版本 save_inference_model 接口存储格式的参数文件名,没有默认文件名,默认将各个参数分散存储为单独的文件。

返回

TranslatedLayer,一个能够执行存储模型的 Layer 对象。

代码示例

  1. 载入由接口 paddle.jit.save 存储的模型进行预测推理及 fine-tune 训练。

    import numpy as np
    import paddle
    import paddle.nn as nn
    import paddle.optimizer as opt
    
    BATCH_SIZE = 16
    BATCH_NUM = 4
    EPOCH_NUM = 4
    
    IMAGE_SIZE = 784
    CLASS_NUM = 10
    
    # define a random dataset
    class RandomDataset(paddle.io.Dataset):
        def __init__(self, num_samples):
            self.num_samples = num_samples
    
        def __getitem__(self, idx):
            image = np.random.random([IMAGE_SIZE]).astype('float32')
            label = np.random.randint(0, CLASS_NUM - 1, (1, )).astype('int64')
            return image, label
    
        def __len__(self):
            return self.num_samples
    
    class LinearNet(nn.Layer):
        def __init__(self):
            super(LinearNet, self).__init__()
            self._linear = nn.Linear(IMAGE_SIZE, CLASS_NUM)
    
        @paddle.jit.to_static
        def forward(self, x):
            return self._linear(x)
    
    def train(layer, loader, loss_fn, opt):
        for epoch_id in range(EPOCH_NUM):
            for batch_id, (image, label) in enumerate(loader()):
                out = layer(image)
                loss = loss_fn(out, label)
                loss.backward()
                opt.step()
                opt.clear_grad()
                print("Epoch {} batch {}: loss = {}".format(
                    epoch_id, batch_id, np.mean(loss.numpy())))
    
    # 1. train & save model.
    
    # create network
    layer = LinearNet()
    loss_fn = nn.CrossEntropyLoss()
    adam = opt.Adam(learning_rate=0.001, parameters=layer.parameters())
    
    # create data loader
    dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)
    loader = paddle.io.DataLoader(dataset,
        batch_size=BATCH_SIZE,
        shuffle=True,
        drop_last=True,
        num_workers=2)
    
    # train
    train(layer, loader, loss_fn, adam)
    
    # save
    path = "example_model/linear"
    paddle.jit.save(layer, path)
    
    # 2. load model
    
    # load
    loaded_layer = paddle.jit.load(path)
    
    # inference
    loaded_layer.eval()
    x = paddle.randn([1, IMAGE_SIZE], 'float32')
    pred = loaded_layer(x)
    
    # fine-tune
    loaded_layer.train()
    adam = opt.Adam(learning_rate=0.001, parameters=loaded_layer.parameters())
    train(loaded_layer, loader, loss_fn, adam)
    
  2. 兼容载入由接口 paddle.fluid.io.save_inference_model 存储的模型进行预测推理及 fine-tune 训练。

    import numpy as np
    import paddle
    import paddle.static as static
    import paddle.nn as nn
    import paddle.optimizer as opt
    import paddle.nn.functional as F
    
    BATCH_SIZE = 16
    BATCH_NUM = 4
    EPOCH_NUM = 4
    
    IMAGE_SIZE = 784
    CLASS_NUM = 10
    
    # define a random dataset
    class RandomDataset(paddle.io.Dataset):
        def __init__(self, num_samples):
            self.num_samples = num_samples
    
        def __getitem__(self, idx):
            image = np.random.random([IMAGE_SIZE]).astype('float32')
            label = np.random.randint(0, CLASS_NUM - 1, (1, )).astype('int64')
            return image, label
    
        def __len__(self):
            return self.num_samples
    
    paddle.enable_static()
    
    image = static.data(name='image', shape=[None, 784], dtype='float32')
    label = static.data(name='label', shape=[None, 1], dtype='int64')
    pred = static.nn.fc(x=image, size=10, activation='softmax')
    loss = F.cross_entropy(input=pred, label=label)
    avg_loss = paddle.mean(loss)
    
    optimizer = paddle.optimizer.SGD(learning_rate=0.001)
    optimizer.minimize(avg_loss)
    
    place = paddle.CPUPlace()
    exe = static.Executor(place)
    exe.run(static.default_startup_program())
    
    # create data loader
    dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)
    loader = paddle.io.DataLoader(dataset,
        feed_list=[image, label],
        places=place,
        batch_size=BATCH_SIZE,
        shuffle=True,
        drop_last=True,
        return_list=False,
        num_workers=2)
    
    # 1. train and save inference model
    for data in loader():
        exe.run(
            static.default_main_program(),
            feed=data,
            fetch_list=[avg_loss])
    
    model_path = "fc.example.model"
    paddle.fluid.io.save_inference_model(
        model_path, ["image"], [pred], exe)
    
    # 2. load model
    
    # enable dygraph mode
    paddle.disable_static(place)
    
    # load
    fc = paddle.jit.load(model_path)
    
    # inference
    fc.eval()
    x = paddle.randn([1, IMAGE_SIZE], 'float32')
    pred = fc(x)
    
    # fine-tune
    fc.train()
    loss_fn = nn.CrossEntropyLoss()
    adam = opt.Adam(learning_rate=0.001, parameters=fc.parameters())
    loader = paddle.io.DataLoader(dataset,
        places=place,
        batch_size=BATCH_SIZE,
        shuffle=True,
        drop_last=True,
        num_workers=2)
    for epoch_id in range(EPOCH_NUM):
        for batch_id, (image, label) in enumerate(loader()):
            out = fc(image)
            loss = loss_fn(out, label)
            loss.backward()
            adam.step()
            adam.clear_grad()
            print("Epoch {} batch {}: loss = {}".format(
                epoch_id, batch_id, np.mean(loss.numpy())))
    

使用本API的教程文档