DistributeTranspilerConfig

class paddle.fluid.transpiler. DistributeTranspilerConfig [源代码]

单机任务切换为分布式任务的配置类,用户可根据需求进行配置,如指定同步/异步训练,指定节点个数及模型切分逻辑。

返回

None

属性

slice_var_up (bool)

是否为Pserver将张量切片,默认为True, bool类型属性,默认为True。该参数将指定是否将参数/梯度切分后均匀分布于多个PServer上。slice_var_up为True的情况下,会将参数均匀切分后分布于多个PServer端,使每个PServer的负载相对均衡。

split_method (PSDispatcher)

参数分发的方式,当前支持的方法包括 cn_api_fluid_transpiler_RoundRobinHashName 两种,默认为RoundRobin。

注意:尝试选择最佳方法来达到负载均衡。

min_block_size (int)

参数切片时,最小数据块的大小,默认为8192。

注意:根据:https://github.com/PaddlePaddle/Paddle/issues/8638#issuecomment-369912156,当数据块大小超过2MB时,我们可以有效地使用带宽。如果你想更改它,请详细查看slice_variable函数。

代码示例

from paddle.fluid.transpiler.ps_dispatcher import RoundRobin
import paddle.fluid as fluid

config = fluid.DistributeTranspilerConfig()
config.slice_var_up = True
config.split_method = RoundRobin
config.min_block_size = 81920