SGDOptimizer

class paddle.fluid.optimizer. SGDOptimizer ( learning_rate, parameter_list=None, regularization=None, grad_clip=None, name=None ) [源代码]

该接口实现随机梯度下降算法的优化器

\[\begin{split}\\param\_out=param-learning\_rate*grad\\\end{split}\]

参数

  • learning_rate (float|Variable) - 用于更新参数的学习率。可以是浮点值,也可以是具有一个浮点值作为数据元素的变量。

  • parameter_list (list,可选) - 指定优化器需要优化的参数。在动态图模式下必须提供该参数;在静态图模式下默认值为None,这时所有的参数都将被优化。

  • regularization (WeightDecayRegularizer,可选) - 正则化方法。支持两种正则化策略:cn_api_fluid_regularizer_L1Decaycn_api_fluid_regularizer_L2Decay。如果一个参数已经在 ParamAttr 中设置了正则化,这里的正则化设置将被忽略; 如果没有在 ParamAttr 中设置正则化,这里的设置才会生效。默认值为None,表示没有正则化。

  • grad_clip (GradientClipBase,可选) – 梯度裁剪的策略,支持三种裁剪策略:cn_api_fluid_clip_GradientClipByGlobalNormcn_api_fluid_clip_GradientClipByNormcn_api_fluid_clip_GradientClipByValue 。 默认值为None,此时将不进行梯度裁剪。

  • name (str,可选) - 具体用法请参见 Name,一般无需设置,默认值为 None。

代码示例

import paddle
import paddle.fluid as fluid
import numpy as np

place = fluid.CPUPlace()
main = fluid.Program()
with fluid.program_guard(main):
    x = fluid.layers.data(name='x', shape=[13], dtype='float32')
    y = fluid.layers.data(name='y', shape=[1], dtype='float32')
    y_predict = fluid.layers.fc(input=x, size=1, act=None)
    cost = fluid.layers.square_error_cost(input=y_predict, label=y)
    avg_cost = fluid.layers.mean(cost)

    sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
    sgd_optimizer.minimize(avg_cost)

    fetch_list = [avg_cost]
    train_reader = paddle.batch(
        paddle.dataset.uci_housing.train(), batch_size=1)
    feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
    exe = fluid.Executor(place)
    exe.run(fluid.default_startup_program())
    for data in train_reader():
        exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)

方法

minimize(loss, startup_program=None, parameter_list=None, no_grad_set=None)

为网络添加反向计算过程,并根据反向计算所得的梯度,更新parameter_list中的Parameters,最小化网络损失值loss。

参数

  • loss (Variable) – 需要最小化的损失值变量

  • startup_program (Program,可选) – 用于初始化parameter_list中参数的 Program,默认值为None,此时将使用 default_startup_program

  • parameter_list (list,可选) – 待更新的Parameter或者Parameter.name组成的列表,默认值为None,此时将更新所有的Parameter

  • no_grad_set (set,可选) – 不需要更新的Parameter或者Parameter.name组成的集合,默认值为None

返回

tuple(optimize_ops, params_grads),其中optimize_ops为参数优化OP列表;param_grads为由(param, param_grad)组成的列表,其中param和param_grad分别为参数和参数的梯度。该返回值可以加入到 Executor.run() 接口的 fetch_list 参数中,若加入,则会重写 use_prune 参数为True,并根据 feedfetch_list 进行剪枝,详见 Executor 的文档。

返回类型

tuple

代码示例

import paddle
import paddle.fluid as fluid
import numpy as np

place = fluid.CPUPlace()
main = fluid.Program()
with fluid.program_guard(main):
    x = fluid.layers.data(name='x', shape=[13], dtype='float32')
    y = fluid.layers.data(name='y', shape=[1], dtype='float32')
    y_predict = fluid.layers.fc(input=x, size=1, act=None)
    cost = fluid.layers.square_error_cost(input=y_predict, label=y)
    avg_cost = fluid.layers.mean(cost)

    sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
    sgd_optimizer.minimize(avg_cost)

    fetch_list = [avg_cost]
    train_reader = paddle.batch(
        paddle.dataset.uci_housing.train(), batch_size=1)
    feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
    exe = fluid.Executor(place)
    exe.run(fluid.default_startup_program())
    for data in train_reader():
        exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)

clear_gradients()

注意:

1. 该API只在 Dygraph 模式下生效

清除需要优化的参数的梯度。

代码示例

import paddle.fluid as fluid
import numpy as np

with fluid.dygraph.guard():
    value = np.arange(26).reshape(2, 13).astype("float32")
    a = fluid.dygraph.to_variable(value)
    linear = fluid.Linear(13, 5, dtype="float32")
    optimizer = fluid.optimizer.SGDOptimizer(learning_rate=0.01,
                                  parameter_list=linear.parameters())
    out = linear(a)
    out.backward()
    optimizer.minimize(out)
    optimizer.clear_gradients()

set_lr()

注意:

1. 该API只在 Dygraph 模式下生效

手动设置当前 optimizer 的学习率。当使用LearningRateDecay时,无法使用该API手动设置学习率,因为这将导致冲突。

参数

value (float|Variable) - 需要设置的学习率的值。

返回

代码示例

import paddle.fluid as fluid

with fluid.dygraph.guard():
    linear = fluid.dygraph.nn.Linear(10, 10)
    adam = fluid.optimizer.Adam(0.1, parameter_list=linear.parameters())
    # 通过Python float数值手动设置学习率
    lr_list = [0.2, 0.3, 0.4, 0.5, 0.6]
    for i in range(5):
        adam.set_lr(lr_list[i])
        print("current lr is {}".format(adam.current_step_lr()))
    # 打印结果:
    #    current lr is 0.2
    #    current lr is 0.3
    #    current lr is 0.4
    #    current lr is 0.5
    #    current lr is 0.6


    # 通过 框架的Variable 设置学习率
    lr_var = fluid.layers.create_global_var(shape=[1], value=0.7, dtype='float32')
    adam.set_lr(lr_var)
    print("current lr is {}".format(adam.current_step_lr()))
    # 打印结果:
    #    current lr is 0.7

current_step_lr()

注意:

1. 该API只在 Dygraph 模式下生效

获取当前步骤的学习率。当不使用LearningRateDecay时,每次调用的返回值都相同,否则返回当前步骤的学习率。

返回 当前步骤的学习率。

返回类型 float

代码示例

import paddle.fluid as fluid
import numpy as np

# example1: LearningRateDecay is not used, return value is all the same
with fluid.dygraph.guard():
    emb = fluid.dygraph.Embedding([10, 10])
    adam = fluid.optimizer.Adam(0.001, parameter_list = emb.parameters())
    lr = adam.current_step_lr()
    print(lr) # 0.001

# example2: PiecewiseDecay is used, return the step learning rate
with fluid.dygraph.guard():
    inp = np.random.uniform(-0.1, 0.1, [10, 10]).astype("float32")
    linear = fluid.dygraph.nn.Linear(10, 10)
    inp = fluid.dygraph.to_variable(inp)
    out = linear(inp)
    loss = fluid.layers.reduce_mean(out)

    bd = [2, 4, 6, 8]
    value = [0.2, 0.4, 0.6, 0.8, 1.0]
    adam = fluid.optimizer.Adam(fluid.dygraph.PiecewiseDecay(bd, value, 0),
                       parameter_list=linear.parameters())

    # first step: learning rate is 0.2
    np.allclose(adam.current_step_lr(), 0.2, rtol=1e-06, atol=0.0) # True

    # learning rate for different steps
    ret = [0.2, 0.2, 0.4, 0.4, 0.6, 0.6, 0.8, 0.8, 1.0, 1.0, 1.0, 1.0]
    for i in range(12):
        adam.minimize(loss)
        lr = adam.current_step_lr()
        np.allclose(lr, ret[i], rtol=1e-06, atol=0.0) # True