matrix_rank

paddle.linalg. matrix_rank ( x, tol=None, hermitian=False, name=None ) [源代码]

计算矩阵的秩

当hermitian=False时,矩阵的秩是大于指定的 tol 阈值的奇异值的数量;当hermitian=True时,矩阵的秩是大于指定 tol 阈值的特征值绝对值的数量。

参数

  • x (Tensor) - 输入tensor。它的形状应该是 [..., m, n] ,其中 ... 是零或者更大的批次维度。如果 x 是一批矩阵,则输出具有相同的批次尺寸。 x 的数据类型应该为float32或float64。

  • tol (float, Tensor, 可选) - 阈值。默认值:None。如果未指定 tolsigma 为所计算奇异值中的最大值(或特征值绝对值的最大值), epsx 的类型的epsilon值,使用公式 tol=sigma * max(m,n) * eps 来计算 tol 。请注意,如果 x 是一批矩阵,以这种方式为每批矩阵计算 tol

  • hermitian (bool, 可选) - 表示 x 是否是Hermitian矩阵。 默认值:False。当hermitian=True时, x 被假定为Hermitian矩阵,这时函数内会使用更高效的算法来求解特征值,但在函数内部不会对 x 进行检查。我们仅仅使用矩阵的下三角来进行计算。

  • name (str, 可选) - 操作的名称(可选,默认值为None)。更多信息请参见 Name

返回

Tensorx 的秩,数据类型为int64。

代码示例

import paddle
a = paddle.eye(10)
b = paddle.linalg.matrix_rank(a)
print(b)
# b = [10]

c = paddle.ones(shape=[3, 4, 5, 5])
d = paddle.linalg.matrix_rank(c, tol=0.01, hermitian=True)
print(d)
# d = [[1, 1, 1, 1],
#      [1, 1, 1, 1],
#      [1, 1, 1, 1]]