SGD¶
- class paddle.optimizer. SGD ( learning_rate=0.001, parameters=None, weight_decay=None, grad_clip=None, name=None ) [源代码] ¶
随机梯度下降算法的优化器。
为网络添加反向计算过程,并根据反向计算所得的梯度,更新 parameters(传入 SGD 的变量,一般会是网络中的参数) ,最小化网络损失值 loss。
参数¶
learning_rate (float|_LRScheduler,可选) - 学习率,用于参数更新的计算。可以是一个浮点型值或者一个_LRScheduler 类,默认值为 0.001。
parameters (list,可选) - 指定优化器需要优化的参数。在动态图模式下必须提供该参数;在静态图模式下默认值为 None,这时所有的参数都将被优化。
weight_decay (float|Tensor,可选) - 权重衰减系数,是一个 float 类型或者 shape 为[1],数据类型为 float32 的 Tensor 类型。默认值为 0.01。
grad_clip (GradientClipBase,可选) – 梯度裁剪的策略,支持三种裁剪策略:paddle.nn.ClipGradByGlobalNorm 、 paddle.nn.ClipGradByNorm 、 paddle.nn.ClipGradByValue 。 默认值为 None,此时将不进行梯度裁剪。
name (str,可选) - 具体用法请参见 Name,一般无需设置,默认值为 None。
代码示例¶
>>> import paddle
>>> inp = paddle.uniform(min=-0.1, max=0.1, shape=[10, 10], dtype='float32')
>>> linear = paddle.nn.Linear(10, 10)
>>> inp = paddle.to_tensor(inp)
>>> out = linear(inp)
>>> loss = paddle.mean(out)
>>> sgd = paddle.optimizer.SGD(learning_rate=0.1, parameters=linear.parameters(), weight_decay=0.01)
>>> out.backward()
>>> sgd.step()
>>> sgd.clear_grad()
方法¶
step()¶
该 API 只在 Dygraph 模式下生效。
执行一次优化器并进行参数更新。
返回
无。
代码示例
>>> import paddle
>>> a = paddle.arange(26, dtype="float32").reshape([2, 13])
>>> linear = paddle.nn.Linear(13, 5)
>>> # This can be any optimizer supported by dygraph.
>>> adam = paddle.optimizer.Adam(learning_rate = 0.01,
... parameters = linear.parameters())
>>> out = linear(a)
>>> out.backward()
>>> adam.step()
>>> adam.clear_grad()
minimize(loss, startup_program=None, parameters=None, no_grad_set=None)¶
为网络添加反向计算过程,并根据反向计算所得的梯度,更新 parameters(传入 SGD 的变量,一般会是网络中的参数),最小化网络损失值 loss。
参数
loss (Tensor) - 需要最小化的损失值变量。
startup_program (Program,可选) - 用于初始化 parameters 中参数的 Program,默认值为 None,此时将使用 default_startup_program。
parameters (list,可选) - 待更新的 Parameter 或者 Parameter.name 组成的列表,默认值为 None,此时将更新所有的 Parameter。
no_grad_set (set,可选) - 不需要更新的 Parameter 或者 Parameter.name 组成的集合,默认值为 None。
返回
tuple(optimize_ops, params_grads),其中 optimize_ops 为参数优化 OP 列表;param_grads 为由(param, param_grad)组成的列表,其中 param 和 param_grad 分别为参数和参数的梯度。在静态图模式下,该返回值可以加入到
Executor.run()
接口的fetch_list
参数中,若加入,则会重写use_prune
参数为 True,并根据feed
和fetch_list
进行剪枝,详见Executor
的文档。
代码示例
>>> import paddle
>>> linear = paddle.nn.Linear(10, 10)
>>> input = paddle.uniform(shape=[10, 10], min=-0.1, max=0.1)
>>> out = linear(input)
>>> loss = paddle.mean(out)
>>> beta1 = paddle.to_tensor([0.9], dtype="float32")
>>> beta2 = paddle.to_tensor([0.99], dtype="float32")
>>> adam = paddle.optimizer.Adam(learning_rate=0.1,
... parameters=linear.parameters(),
... weight_decay=0.01)
>>> loss.backward()
>>> adam.minimize(loss)
>>> adam.clear_grad()
clear_grad()¶
该 API 只在 Dygraph 模式下生效。
清除需要优化的参数的梯度。
代码示例
>>> import paddle
>>> a = paddle.arange(26, dtype="float32").reshape([2, 13])
>>> linear = paddle.nn.Linear(13, 5)
>>> # This can be any optimizer supported by dygraph.
>>> adam = paddle.optimizer.Adam(learning_rate = 0.01,
... parameters = linear.parameters())
>>> out = linear(a)
>>> out.backward()
>>> adam.step()
>>> adam.clear_grad()