FastDeploy  latest
Fast & Easy to Deploy!
Public Member Functions | List of all members
fastdeploy::vision::ocr::RecognizerPreprocessor Class Reference

Preprocessor object for PaddleClas serials model. More...

#include <rec_preprocessor.h>

Inheritance diagram for fastdeploy::vision::ocr::RecognizerPreprocessor:
Inheritance graph
[legend]
Collaboration diagram for fastdeploy::vision::ocr::RecognizerPreprocessor:
Collaboration graph
[legend]

Public Member Functions

bool Run (std::vector< FDMat > *images, std::vector< FDTensor > *outputs, size_t start_index, size_t end_index, const std::vector< int > &indices)
 Process the input image and prepare input tensors for runtime. More...
 
virtual bool Apply (FDMatBatch *image_batch, std::vector< FDTensor > *outputs)
 Implement the virtual function of ProcessorManager, Apply() is the body of Run(). Apply() contains the main logic of preprocessing, Run() is called by users to execute preprocessing. More...
 
void SetStaticShapeInfer (bool static_shape_infer)
 
bool GetStaticShapeInfer () const
 Get static_shape_infer of the recognition preprocess.
 
void SetNormalize (const std::vector< float > &mean, const std::vector< float > &std, bool is_scale)
 
void SetRecImageShape (const std::vector< int > &rec_image_shape)
 Set rec_image_shape for the recognition preprocess.
 
std::vector< int > GetRecImageShape ()
 Get rec_image_shape for the recognition preprocess.
 
void DisableNormalize ()
 This function will disable normalize in preprocessing step.
 
void DisablePermute ()
 This function will disable hwc2chw in preprocessing step.
 
- Public Member Functions inherited from fastdeploy::vision::ProcessorManager
void UseCuda (bool enable_cv_cuda=false, int gpu_id=-1)
 Use CUDA to boost the performance of processors. More...
 
bool Run (std::vector< FDMat > *images, std::vector< FDTensor > *outputs)
 Process the input images and prepare input tensors for runtime. More...
 

Detailed Description

Preprocessor object for PaddleClas serials model.

Member Function Documentation

◆ Apply()

bool fastdeploy::vision::ocr::RecognizerPreprocessor::Apply ( FDMatBatch image_batch,
std::vector< FDTensor > *  outputs 
)
virtual

Implement the virtual function of ProcessorManager, Apply() is the body of Run(). Apply() contains the main logic of preprocessing, Run() is called by users to execute preprocessing.

Parameters
[in]image_batchThe input image batch
[in]outputsThe output tensors which will feed in runtime
Returns
true if the preprocess successed, otherwise false

Implements fastdeploy::vision::ProcessorManager.

◆ Run()

bool fastdeploy::vision::ocr::RecognizerPreprocessor::Run ( std::vector< FDMat > *  images,
std::vector< FDTensor > *  outputs,
size_t  start_index,
size_t  end_index,
const std::vector< int > &  indices 
)

Process the input image and prepare input tensors for runtime.

Parameters
[in]imagesThe input data list, all the elements are FDMat
[in]outputsThe output tensors which will be fed into runtime
Returns
true if the preprocess successed, otherwise false

◆ SetNormalize()

void fastdeploy::vision::ocr::RecognizerPreprocessor::SetNormalize ( const std::vector< float > &  mean,
const std::vector< float > &  std,
bool  is_scale 
)
inline

Set preprocess normalize parameters, please call this API to customize the normalize parameters, otherwise it will use the default normalize parameters.

◆ SetStaticShapeInfer()

void fastdeploy::vision::ocr::RecognizerPreprocessor::SetStaticShapeInfer ( bool  static_shape_infer)
inline

Set static_shape_infer is true or not. When deploy PP-OCR on hardware which can not support dynamic input shape very well, like Huawei Ascned, static_shape_infer needs to to be true.


The documentation for this class was generated from the following files: