Preprocessor object for DBDetector serials model.
More...
#include <det_preprocessor.h>
|
virtual bool | Apply (FDMatBatch *image_batch, std::vector< FDTensor > *outputs) |
| Process the input image and prepare input tensors for runtime. More...
|
|
void | SetMaxSideLen (int max_side_len) |
| Set max_side_len for the detection preprocess, default is 960.
|
|
int | GetMaxSideLen () const |
| Get max_side_len of the detection preprocess.
|
|
void | SetNormalize (const std::vector< float > &mean, const std::vector< float > &std, bool is_scale) |
|
const std::vector< std::array< int, 4 > > * | GetBatchImgInfo () |
|
void | DisableNormalize () |
| This function will disable normalize in preprocessing step.
|
|
void | DisablePermute () |
| This function will disable hwc2chw in preprocessing step.
|
|
void | SetDetImageShape (const std::vector< int > &det_image_shape) |
|
std::vector< int > | GetDetImageShape () const |
| Get cls_image_shape for the classification preprocess.
|
|
void | SetStaticShapeInfer (bool static_shape_infer) |
|
bool | GetStaticShapeInfer () const |
| Get static_shape_infer of the recognition preprocess.
|
|
void | UseCuda (bool enable_cv_cuda=false, int gpu_id=-1) |
| Use CUDA to boost the performance of processors. More...
|
|
bool | Run (std::vector< FDMat > *images, std::vector< FDTensor > *outputs) |
| Process the input images and prepare input tensors for runtime. More...
|
|
Preprocessor object for DBDetector serials model.
◆ Apply()
bool fastdeploy::vision::ocr::DBDetectorPreprocessor::Apply |
( |
FDMatBatch * |
image_batch, |
|
|
std::vector< FDTensor > * |
outputs |
|
) |
| |
|
virtual |
Process the input image and prepare input tensors for runtime.
- Parameters
-
[in] | image_batch | The input image batch |
[in] | outputs | The output tensors which will feed in runtime |
- Returns
- true if the preprocess successed, otherwise false
Implements fastdeploy::vision::ProcessorManager.
◆ GetBatchImgInfo()
const std::vector<std::array<int, 4> >* fastdeploy::vision::ocr::DBDetectorPreprocessor::GetBatchImgInfo |
( |
| ) |
|
|
inline |
Get the image info of the last batch, return a list of array {image width, image height, resize width, resize height}
◆ SetDetImageShape()
void fastdeploy::vision::ocr::DBDetectorPreprocessor::SetDetImageShape |
( |
const std::vector< int > & |
det_image_shape | ) |
|
|
inline |
Set det_image_shape for the detection preprocess. This api is usually used when you retrain the model. Generally, you do not need to use it.
◆ SetNormalize()
void fastdeploy::vision::ocr::DBDetectorPreprocessor::SetNormalize |
( |
const std::vector< float > & |
mean, |
|
|
const std::vector< float > & |
std, |
|
|
bool |
is_scale |
|
) |
| |
|
inline |
Set preprocess normalize parameters, please call this API to customize the normalize parameters, otherwise it will use the default normalize parameters.
◆ SetStaticShapeInfer()
void fastdeploy::vision::ocr::DBDetectorPreprocessor::SetStaticShapeInfer |
( |
bool |
static_shape_infer | ) |
|
|
inline |
Set static_shape_infer is true or not. When deploy PP-OCR on hardware which can not support dynamic input shape very well, like Huawei Ascned, static_shape_infer needs to to be true.
The documentation for this class was generated from the following files:
- /fastdeploy/my_work/FastDeploy/fastdeploy/vision/ocr/ppocr/det_preprocessor.h
- /fastdeploy/my_work/FastDeploy/fastdeploy/vision/ocr/ppocr/det_preprocessor.cc