通过AutoEncoder实现时序数据异常检测¶
作者: Reatris
日期: 2022.5
摘要: 本示例将会演示如何使用飞桨2.3 完成时序异常检测任务。这是一个较为简单的示例,将会构建一个AutoEncoder网络完成任务。
一、环境配置¶
本示例基于PaddlePaddle 2.3.0 编写,如果你的环境不是本版本,请先参考官网安装 PaddlePaddle 2.3.0。
# 导入 paddle
import paddle
import paddle.nn.functional as F
print(paddle.__version__)
2.3.0
# 导入其他模块
import numpy as np
import pandas as pd
from matplotlib import pyplot as plt
import warnings
warnings.filterwarnings("ignore")
二、数据加载¶
2.1 下载数据集¶
将使用纽伦塔异常基准(NAB)数据集。它提供人工时间序列数据,包含标记的异常行为周期。
该数据集已经挂载到AI Studio,相应的项目也已经挂载数据集基于AUTOENCODER实现异常时序检测
将使用art_daily_small_noise.csv文件内数据进行训练,并使用art_day_jumpup.csv文件内数据进行测试。
该数据集的简单性能够有效地演示异常检测。
# 下载数据集
!wget -O NAB.zip https://bj.bcebos.com/v1/ai-studio-online/f7743f2bb65848088bd74dea1608965e9d9596a028c4453f99c86b514d2d3de3?responseContentDisposition=attachment%3B%20filename%3DNAB.zip&authorization=bce-auth-v1%2F0ef6765c1e494918bc0d4c3ca3e5c6d1%2F2020-10-15T12%3A41%3A41Z%2F-1%2F%2F7b1e4e42cf22cfa1460e3286ba2c6225d363ecadd9a9bf91570a23f1af81aec4
# 解压数据集
!unzip NAB.zip
Archive: NAB.zip
creating: artificialNoAnomaly/
inflating: artificialNoAnomaly/art_daily_no_noise.csv
inflating: artificialNoAnomaly/art_daily_perfect_square_wave.csv
inflating: artificialNoAnomaly/art_daily_small_noise.csv
inflating: artificialNoAnomaly/art_flatline.csv
inflating: artificialNoAnomaly/art_noisy.csv
creating: artificialWithAnomaly/
inflating: artificialWithAnomaly/art_daily_flatmiddle.csv
inflating: artificialWithAnomaly/art_daily_jumpsdown.csv
inflating: artificialWithAnomaly/art_daily_jumpsup.csv
inflating: artificialWithAnomaly/art_daily_nojump.csv
inflating: artificialWithAnomaly/art_increase_spike_density.csv
inflating: artificialWithAnomaly/art_load_balancer_spikes.csv
#正常数据预览
df_small_noise_path = './artificialNoAnomaly/art_daily_small_noise.csv'
df_small_noise = pd.read_csv(
df_small_noise_path, parse_dates=True, index_col="timestamp"
)
#异常数据预览
df_daily_jumpsup_path = './artificialWithAnomaly/art_daily_jumpsup.csv'
df_daily_jumpsup = pd.read_csv(
df_daily_jumpsup_path, parse_dates=True, index_col="timestamp"
)
print(df_small_noise.head())
print(df_daily_jumpsup.head())
value
timestamp
2014-04-01 00:00:00 18.324919
2014-04-01 00:05:00 21.970327
2014-04-01 00:10:00 18.624806
2014-04-01 00:15:00 21.953684
2014-04-01 00:20:00 21.909120
value
timestamp
2014-04-01 00:00:00 19.761252
2014-04-01 00:05:00 20.500833
2014-04-01 00:10:00 19.961641
2014-04-01 00:15:00 21.490266
2014-04-01 00:20:00 20.187739
2.2 数据可视化¶
#正常的时序数据可视化
fig, ax = plt.subplots()
df_small_noise.plot(legend=False, ax=ax)
plt.show()
带有异常的时序数据如下:
异常时序数据的作用是待训练好模型后,将使用以下数据进行测试,并查看数据中的突然跳升是否被检测为异常。
#异常的时序数据可视化
fig, ax = plt.subplots()
df_daily_jumpsup.plot(legend=False, ax=ax)
plt.show()
2.3 数据预处理¶
训练数据包含了14天的采样,每天每隔5分钟采集一次数据,所以:
每天包含 24 * 60 / 5 = 288 个timestep
总共14天 288 * 14 = 4032 个数据
# 初始化并保存得到的均值和方差,用于初始化数据。
training_mean = df_small_noise.mean()
training_std = df_small_noise.std()
df_training_value = (df_small_noise - training_mean) / training_std
print("训练数据总量:", len(df_training_value))
训练数据总量: 4032
2.4 创建 Dataset
¶
从训练数据中创建组合时间步骤为288的连续数据值的序列。
#时序步长
TIME_STEPS = 288
class MyDataset(paddle.io.Dataset):
"""
步骤一:继承paddle.io.Dataset类
"""
def __init__(self,data,time_steps):
"""
步骤二:实现构造函数,定义数据读取方式,划分训练和测试数据集
注意:这个是不需要label
"""
super().__init__()
self.time_steps = time_steps
self.data = paddle.to_tensor(self.transform(data), dtype='float32')
def transform(self,data):
'''
构造时序数据
'''
output = []
for i in range(len(data) - self.time_steps):
output.append(np.reshape(data[i : (i + self.time_steps)], (1,self.time_steps)))
return np.stack(output)
def __getitem__(self, index):
"""
步骤三:实现__getitem__方法,定义指定index时如何获取数据,并返回单条数据(训练数据)
"""
data = self.data[index]
label = self.data[index]
return data, label
def __len__(self):
"""
步骤四:实现__len__方法,返回数据集总数目
"""
return len(self.data)
# 实例化数据集
train_dataset = MyDataset(df_training_value.values, TIME_STEPS)
三、模型组网¶
接下来是构建AutoEncoder
模型,本示例使用 paddle.nn
下的API,Layer、Conv1D、Conv1DTranspose、relu
,采用 SubClass
的方式完成网络的搭建。
class AutoEncoder(paddle.nn.Layer):
def __init__(self):
super().__init__()
self.conv0 = paddle.nn.Conv1D(in_channels=1,out_channels=32,kernel_size=7,stride=2)
self.conv1 = paddle.nn.Conv1D(in_channels=32,out_channels=16,kernel_size=7,stride=2)
self.convT0 = paddle.nn.Conv1DTranspose(in_channels=16,out_channels=32,kernel_size=7,stride=2)
self.convT1 = paddle.nn.Conv1DTranspose(in_channels=32,out_channels=1,kernel_size=7,stride=2)
def forward(self, x):
x = self.conv0(x)
x = F.relu(x)
x = F.dropout(x,0.2)
x = self.conv1(x)
x = F.relu(x)
x = self.convT0(x)
x = F.relu(x)
x = F.dropout(x,0.2)
x = self.convT1(x)
return x
四、模型训练¶
接下来,用一个循环来进行模型的训练,将会:
使用
paddle.optimizer.Adam
优化器来进行优化。使用
paddle.nn.MSELoss
来计算损失值。使用
paddle.io.DataLoader
来实现数据加载。
import tqdm
# 参数设置
epoch_num = 200
batch_size = 128
learning_rate = 0.001
def train():
print('训练开始')
# 实例化模型
model = AutoEncoder()
# 将模型转换为训练模式
model.train()
# 设置优化器,学习率,并且把模型参数给优化器
opt = paddle.optimizer.Adam(learning_rate=learning_rate,parameters=model.parameters())
# 设置损失函数
mse_loss = paddle.nn.MSELoss()
# 设置数据读取器
data_reader = paddle.io.DataLoader(train_dataset,
batch_size=batch_size,
shuffle=True,
drop_last=True)
history_loss = []
iter_epoch = []
for epoch in tqdm.tqdm(range(epoch_num)):
for batch_id, data in enumerate(data_reader()):
x = data[0]
y = data[1]
out = model(x)
avg_loss = mse_loss(out,(y[:,:,:-1])) # 输入的数据经过卷积会丢掉最后一个数据
avg_loss.backward()
opt.step()
opt.clear_grad()
iter_epoch.append(epoch)
history_loss.append(avg_loss.numpy()[0])
# 绘制loss
plt.plot(iter_epoch,history_loss, label = 'loss')
plt.legend()
plt.xlabel('iters')
plt.ylabel('Loss')
plt.show()
# 保存模型参数
paddle.save(model.state_dict(),'model')
train()
训练开始
W0509 17:41:12.287537 280 gpu_context.cc:278] Please NOTE: device: 0, GPU Compute Capability: 7.0, Driver API Version: 11.2, Runtime API Version: 10.1
W0509 17:41:12.292202 280 gpu_context.cc:306] device: 0, cuDNN Version: 7.6.
100%|██████████| 200/200 [00:57<00:00, 3.48it/s]
五、模型预测:探测异常时序¶
用训练好的模型探测异常时序:
使用自编码器计算出无异常时序数据集里的所有重建损失
找出最大重建损失并且以这个为阀值,模型重建损失超出这个值则输入的数据为异常时序
# 计算阀值
param_dict = paddle.load('model') # 读取保存的参数
model = AutoEncoder()
model.load_dict(param_dict) # 加载参数
model.eval() # 预测
total_loss = []
datas = []
# 预测所有正常时序
mse_loss = paddle.nn.loss.MSELoss()
# 这里设置batch_size为1,单独求得每个数据的loss
data_reader = paddle.io.DataLoader(train_dataset,
places=[paddle.CPUPlace()],
batch_size=1,
shuffle=False,
drop_last=False,
num_workers=0)
for batch_id, data in enumerate(data_reader()):
x = data[0]
y = data[1]
out = model(x)
avg_loss = mse_loss(out,(y[:,:,:-1]))
total_loss.append(avg_loss.numpy()[0])
datas.append(batch_id)
plt.bar(datas, total_loss)
plt.ylabel("reconstruction loss")
plt.xlabel("data samples")
plt.show()
# 获取重建loss的阀值
threshold = np.max(total_loss)
print("阀值:", threshold)
阀值: 0.03036162
六、AutoEncoder 对异常数据的重构¶
为了有趣,先看看模型是如何重构第一个组数据。这是训练数据集第一天起的288步时间。
import sys
param_dict = paddle.load('model') # 读取保存的参数
model = AutoEncoder()
model.load_dict(param_dict) # 加载参数
model.eval() # 预测
data_reader = paddle.io.DataLoader(train_dataset,
places=[paddle.CPUPlace()],
batch_size=128,
shuffle=False,
drop_last=False,
num_workers=0)
for batch_id, data in enumerate(data_reader()):
x = data[0]
out = model(x)
step = np.arange(287)
plt.plot(step,x[0,0,:-1].numpy())
plt.plot(step,out[0,0].numpy())
plt.show()
sys.exit
可以看出对正常数据的重构效果十分不错
接下来对异常数据进行探测
df_test_value = (df_daily_jumpsup - training_mean) / training_std
fig, ax = plt.subplots()
df_test_value.plot(legend=False, ax=ax)
plt.show()
# 这是测试集里面的异常数据,可以看到第11~~12天发生了异常
# 探测异常数据
threshold = 0.033 # 阀值设定,即刚才求得的值
param_dict = paddle.load('model') # 读取保存的参数
model = AutoEncoder()
model.load_dict(param_dict) # 加载参数
model.eval() # 预测
mse_loss = paddle.nn.loss.MSELoss()
def create_sequences(values, time_steps=288):
'''
探测数据预处理
'''
output = []
for i in range(len(values) - time_steps):
output.append(values[i : (i + time_steps)])
return np.stack(output)
x_test = create_sequences(df_test_value.values)
x = paddle.to_tensor(x_test).astype('float32')
abnormal_index = [] # 记录检测到异常时数据的索引
for i in range(len(x_test)):
input_x = paddle.reshape(x[i],(1,1,288))
out = model(input_x)
loss = mse_loss(input_x[:,:,:-1],out)
if loss.numpy()[0]>threshold:
# 开始检测到异常时序列末端靠近异常点,所以要加上序列长度,得到真实索引位置
abnormal_index.append(i+288)
# 不再检测异常时序列的前端靠近异常点,所以要减去索引长度得到异常点真实索引,为了结果明显,给异常位置加宽40单位
abnormal_index = abnormal_index[:(-288+40)]
print(len(abnormal_index))
print(abnormal_index)
147
[507, 2990, 2991, 2992, 2993, 2994, 2995, 2996, 2997, 2998, 2999, 3000, 3001, 3002, 3003, 3004, 3005, 3006, 3007, 3008, 3009, 3010, 3011, 3012, 3013, 3014, 3015, 3016, 3017, 3018, 3019, 3020, 3021, 3022, 3023, 3024, 3025, 3026, 3027, 3028, 3029, 3030, 3031, 3032, 3033, 3034, 3035, 3036, 3037, 3038, 3039, 3040, 3041, 3042, 3043, 3044, 3045, 3046, 3047, 3048, 3049, 3050, 3051, 3052, 3053, 3054, 3055, 3056, 3057, 3058, 3059, 3060, 3061, 3062, 3063, 3064, 3065, 3066, 3067, 3068, 3069, 3070, 3071, 3072, 3073, 3074, 3075, 3076, 3077, 3078, 3079, 3080, 3081, 3082, 3083, 3084, 3085, 3086, 3087, 3088, 3089, 3090, 3091, 3092, 3093, 3094, 3095, 3096, 3097, 3098, 3099, 3100, 3101, 3102, 3103, 3104, 3105, 3106, 3107, 3108, 3109, 3110, 3111, 3112, 3113, 3114, 3115, 3116, 3117, 3118, 3119, 3120, 3121, 3122, 3123, 3124, 3125, 3126, 3127, 3128, 3129, 3130, 3131, 3132, 3133, 3134, 3135]
# 异常检测结果可视化
df_subset = df_daily_jumpsup.iloc[abnormal_index]
fig, ax = plt.subplots()
df_daily_jumpsup.plot(legend=False, ax=ax)
df_subset.plot(legend=False, ax=ax, color="r")
plt.show()