BuildStrategy¶
- class paddle.static. BuildStrategy ¶
BuildStrategy
使用户更方便地控制 ParallelExecutor 中计算图的建造方法,可通过设置 ParallelExecutor
中的 BuildStrategy
成员来实现此功能。
返回¶
BuildStrategy,一个BuildStrategy的实例
代码示例¶
import os
import paddle
import paddle.static as static
paddle.enable_static()
os.environ['CPU_NUM'] = str(2)
places = static.cpu_places()
data = static.data(name="x", shape=[None, 1], dtype="float32")
hidden = static.nn.fc(x=data, size=10)
loss = paddle.mean(hidden)
paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
build_strategy = static.BuildStrategy()
build_strategy.enable_inplace = True
build_strategy.memory_optimize = True
build_strategy.reduce_strategy = static.BuildStrategy.ReduceStrategy.Reduce
program = static.CompiledProgram(static.default_main_program())
program = program.with_data_parallel(loss_name=loss.name,
build_strategy=build_strategy,
places=places)
- debug_graphviz_path ¶
str类型。表示以graphviz格式向文件中写入计算图的路径,有利于调试。默认值为空字符串。
代码示例¶
import paddle
import paddle.static as static
paddle.enable_static()
build_strategy = static.BuildStrategy()
build_strategy.debug_graphviz_path = "./graph"
- enable_sequential_execution ¶
bool类型。如果设置为True,则算子的执行顺序将与算子定义的执行顺序相同。默认为False。
代码示例¶
import paddle
import paddle.static as static
paddle.enable_static()
build_strategy = static.BuildStrategy()
build_strategy.enable_sequential_execution = True
- fuse_broadcast_ops ¶
bool类型。表明是否融合(fuse) broadcast ops。该选项指在Reduce模式下有效,使程序运行更快。默认为False。
代码示例¶
import paddle
import paddle.static as static
paddle.enable_static()
build_strategy = static.BuildStrategy()
build_strategy.fuse_broadcast_ops = True
- fuse_elewise_add_act_ops ¶
bool类型。表明是否融合(fuse) elementwise_add_op和activation_op。这会使整体执行过程更快。默认为False。
代码示例¶
import paddle
import paddle.static as static
paddle.enable_static()
build_strategy = static.BuildStrategy()
build_strategy.fuse_elewise_add_act_ops = True
- fuse_relu_depthwise_conv ¶
bool类型。表明是否融合(fuse) relu和depthwise_conv2d,节省GPU内存并可能加速执行过程。此选项仅适用于GPU设备。默认为False。
代码示例¶
import paddle
import paddle.static as static
paddle.enable_static()
build_strategy = static.BuildStrategy()
build_strategy.fuse_relu_depthwise_conv = True
- gradient_scale_strategy ¶
paddle.static.BuildStrategy.GradientScaleStrategy
类型。在 ParallelExecutor
中,存在三种定义loss对应梯度( loss@grad )的方式,分别为 CoeffNumDevice
, One
与 Customized
。默认情况下, ParallelExecutor
根据设备数目来设置 loss@grad 。如果用户需要自定义 loss@grad ,可以选择 Customized
方法。默认为 CoeffNumDevice
。
代码示例¶
import numpy
import os
import paddle
import paddle.static as static
paddle.enable_static()
use_cuda = True
place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()
exe = static.Executor(place)
# NOTE: If you use CPU to run the program, you need
# to specify the CPU_NUM, otherwise, paddle will use
# all the number of the logic core as the CPU_NUM,
# in that case, the batch size of the input should be
# greater than CPU_NUM, if not, the process will be
# failed by an exception.
if not use_cuda:
os.environ['CPU_NUM'] = str(2)
places = static.cpu_places()
else:
places = static.cuda_places()
data = static.data(name='X', shape=[None, 1], dtype='float32')
hidden = static.nn.fc(x=data, size=10)
loss = paddle.mean(hidden)
paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
exe.run(static.default_startup_program())
build_strategy = static.BuildStrategy()
build_strategy.gradient_scale_strategy = \
static.BuildStrategy.GradientScaleStrategy.Customized
compiled_prog = static.CompiledProgram(
static.default_main_program()).with_data_parallel(
loss_name=loss.name, build_strategy=build_strategy,
places=places)
dev_count = len(places)
x = numpy.random.random(size=(10, 1)).astype('float32')
loss_grad = numpy.ones((dev_count)).astype("float32") * 0.01
loss_grad_name = loss.name+"@GRAD"
loss_data = exe.run(compiled_prog,
feed={"X": x, loss_grad_name : loss_grad},
fetch_list=[loss.name, loss_grad_name])
- memory_optimize ¶
bool类型或None。设为True时可用于减少总内存消耗,False表示不使用,None表示框架会自动选择使用或者不使用优化策略。当前,None意味着当GC不能使用时,优化策略将被使用。默认为None。
- reduce_strategy ¶
static.BuildStrategy.ReduceStrategy
类型。在 ParallelExecutor
中,存在两种参数梯度聚合策略,即 AllReduce
和 Reduce
。如果用户需要在所有执行设备上独立地进行参数更新,可以使用 AllReduce
。如果使用 Reduce
策略,所有参数的优化将均匀地分配给不同的执行设备,随之将优化后的参数广播给其他执行设备。 默认值为 AllReduce
。
代码示例¶
import paddle
import paddle.static as static
paddle.enable_static()
build_strategy = static.BuildStrategy()
build_strategy.reduce_strategy = static.BuildStrategy.ReduceStrategy.Reduce
- remove_unnecessary_lock ¶
bool类型。设置True会去除GPU操作中的一些锁操作, ParallelExecutor
将运行得更快,默认为True。
代码示例¶
import paddle
import paddle.static as static
paddle.enable_static()
build_strategy = static.BuildStrategy()
build_strategy.remove_unnecessary_lock = True
- sync_batch_norm ¶
bool类型。表示是否使用同步的批正则化,即在训练阶段通过多个设备同步均值和方差。当前的实现不支持FP16训练和CPU。并且目前**仅支持**仅在一台机器上进行同步式批正则。默认为 False。
代码示例¶
import paddle
import paddle.static as static
paddle.enable_static()
build_strategy = static.BuildStrategy()
build_strategy.sync_batch_norm = True