模型库 计算机视觉(PaddleCV) 关键点检测-Simple Baselines
关键点检测-Simple Baselines
类别 计算机视觉(PaddleCV)
应用 人类行为识别 人机交互 服装解析
模型概述
coco2018关键点检测项目亚军方案,网络结构非常简单,效果达到state of the art。
模型说明
# 关键点检测(Simple Baselines for Human Pose Estimation)
## 介绍
本目录包含了对论文[Simple Baselines for Human Pose Estimation and Tracking](https://arxiv.org/abs/1804.06208) (ECCV'18)的复现.

> **演示视频**: *Bruno Mars - That’s What I Like [官方视频]*.
## 环境依赖
本目录下的代码均在4卡Tesla K40/P40 GPU,CentOS系统,CUDA-9.0/8.0,cuDNN-7.0环境下测试运行无误
- Python == 2.7 / 3.6
- PaddlePaddle >= 1.1.0
- opencv-python >= 3.3
### 说明
目前已发现在PaddlePaddle 1.3.0 / cuDNN-7.0环境下,存在问题会导致模型训练loss不收敛。推荐使用最新版本PaddlePaddle (>= 1.4).
## MPII Val结果
| Arch | Head | Shoulder | Elbow | Wrist | Hip | Knee | Ankle | Mean | Mean@0.1| Models |
| ---- |:----:|:--------:|:-----:|:-----:|:---:|:----:|:-----:|:----:|:-------:|:------:|
| 256x256\_pose\_resnet\_50 in PyTorch | 96.351 | 95.329 | 88.989 | 83.176 | 88.420 | 83.960 | 79.594 | 88.532 | 33.911 | - |
| 256x256\_pose\_resnet\_50 in Fluid | 96.385 | 95.363 | 89.211 | 84.084 | 88.454 | 84.182 | 79.546 | 88.748 | 33.750 | [`link`](https://paddlemodels.bj.bcebos.com/pose/pose-resnet50-mpii-256x256.tar.gz) |
| 384x384\_pose\_resnet\_50 in PyTorch | 96.658 | 95.754 | 89.790 | 84.614 | 88.523 | 84.666 | 79.287 | 89.066 | 38.046 | - |
| 384x384\_pose\_resnet\_50 in Fluid | 96.862 | 95.635 | 90.046 | 85.557 | 88.818 | 84.948 | 78.484 | 89.235 | 38.093 | [`link`](https://paddlemodels.bj.bcebos.com/pose/pose-resnet50-mpii-384x384.tar.gz) |
## COCO val2017结果(使用的检测器在COCO val2017数据集上AP为56.4)
| Arch | AP | Ap .5 | AP .75 | AP (M) | AP (L) | AR | AR .5 | AR .75 | AR (M) | AR (L) | Models |
| ---- |:--:|:-----:|:------:|:------:|:------:|:--:|:-----:|:------:|:------:|:------:|:------:|
| 256x192\_pose\_resnet\_50 in PyTorch | 0.704 | 0.886 | 0.783 | 0.671 | 0.772 | 0.763 | 0.929 | 0.834 | 0.721 | 0.824 | - |
| 256x192\_pose\_resnet\_50 in Fluid | 0.712 | 0.897 | 0.786 | 0.683 | 0.756 | 0.741 | 0.906 | 0.806 | 0.709 | 0.790 | [`link`](https://paddlemodels.bj.bcebos.com/pose/pose-resnet50-coco-256x192.tar.gz) |
| 384x288\_pose\_resnet\_50 in PyTorch | 0.722 | 0.893 | 0.789 | 0.681 | 0.797 | 0.776 | 0.932 | 0.838 | 0.728 | 0.846 | - |
| 384x288\_pose\_resnet\_50 in Fluid | 0.727 | 0.897 | 0.796 | 0.690 | 0.783 | 0.754 | 0.907 | 0.813 | 0.714 | 0.814 | [`link`](https://paddlemodels.bj.bcebos.com/pose/pose-resnet50-coco-384x288.tar.gz) |
### 说明
- 使用Flip test
- 对当前模型结果并没有进行调参选择,使用下面相关实验配置训练后,取最后一个epoch后的模型作为最终模型,即可得到上述实验结果
## 开始
### 数据准备和预训练模型
- 安照[提示](https://github.com/Microsoft/human-pose-estimation.pytorch#data-preparation)进行数据准备
- 下载预训练好的ResNet-50
```bash
wget http://paddle-imagenet-models.bj.bcebos.com/resnet_50_model.tar
```
下载完成后,将模型解压、放入到根目录下的'pretrained'文件夹中,默认文件路径树为:
```
${根目录}
`-- pretrained
`-- resnet_50
|-- 115
`-- data
`-- coco
|-- annotations
|-- images
`-- mpii
|-- annot
|-- images
```
### 安装 [COCOAPI](https://github.com/cocodataset/cocoapi)
```bash
# COCOAPI=/path/to/clone/cocoapi
git clone https://github.com/cocodataset/cocoapi.git $COCOAPI
cd $COCOAPI/PythonAPI
# if cython is not installed
pip install Cython
# Install into global site-packages
make install
# Alternatively, if you do not have permissions or prefer
# not to install the COCO API into global site-packages
python2 setup.py install --user
```
### 模型验证(COCO或MPII)
下载COCO/MPII预训练模型(见上表最后一列所附链接),保存到根目录下的'checkpoints'文件夹中,运行:
```bash
python val.py --dataset 'mpii' --checkpoint 'checkpoints/pose-resnet50-mpii-384x384' --data_root 'data/mpii'
```
### 模型训练
```bash
python train.py --dataset 'mpii'
```
**说明** 详细参数配置已保存到`lib/mpii_reader.py` 和 `lib/coco_reader.py`文件中,通过设置dataset来选择使用具体的参数配置
### 模型测试(任意图片,使用上述COCO或MPII预训练好的模型)
同时,我们支持使用预训练好的关键点检测模型预测任意图片
将测试图片放入根目录下的'test'文件夹中,执行
```bash
python test.py --checkpoint 'checkpoints/pose-resnet-50-384x384-mpii'
```
## 引用
- Simple Baselines for Human Pose Estimation and Tracking in PyTorch [`code`](https://github.com/Microsoft/human-pose-estimation.pytorch#data-preparation)