\u200E
模型库 推荐(PaddleRec)
个性化推荐-GRU4Rec
类别 推荐(PaddleRec)
应用 商品浏览 新闻点击 签到地点推荐
模型概述
GRU4REC模型首次将RNN(GRU)运用于session-based推荐,相比传统的KNN和矩阵分解,效果有明显的提升。
模型说明
# GRU4REC 以下是本例的简要目录结构及说明: ```text . ├── README.md # 文档 ├── train.py # 训练脚本 全词表 cross-entropy ├── train_sample_neg.py # 训练脚本 sample负例 包含bpr loss 和cross-entropy ├── infer.py # 预测脚本 全词表 ├── infer_sample_neg.py # 预测脚本 sample负例 ├── net.py # 网络结构 ├── text2paddle.py # 文本数据转paddle数据 ├── cluster_train.py # 多机训练 ├── cluster_train.sh # 多机训练脚本 ├── utils # 通用函数 ├── convert_format.py # 转换数据格式 ├── vocab.txt # 小样本字典 ├── train_data # 小样本训练目录 └── test_data # 小样本测试目录 ``` ## 简介 GRU4REC模型的介绍可以参阅论文[Session-based Recommendations with Recurrent Neural Networks](https://arxiv.org/abs/1511.06939)。 论文的贡献在于首次将RNN(GRU)运用于session-based推荐,相比传统的KNN和矩阵分解,效果有明显的提升。 论文的核心思想是在一个session中,用户点击一系列item的行为看做一个序列,用来训练RNN模型。预测阶段,给定已知的点击序列作为输入,预测下一个可能点击的item。 session-based推荐应用场景非常广泛,比如用户的商品浏览、新闻点击、地点签到等序列数据。 支持三种形式的损失函数, 分别是全词表的cross-entropy, 负采样的Bayesian Pairwise Ranking和负采样的Cross-entropy. 我们基本复现了论文效果,recall@20的效果分别为 全词表 cross entropy : 0.67 负采样 bpr : 0.606 负采样 cross entropy : 0.605 运行样例程序可跳过'RSC15 数据下载及预处理'部分 ## RSC15 数据下载及预处理 运行命令 下载RSC15官网数据集 ``` curl -Lo yoochoose-data.7z https://s3-eu-west-1.amazonaws.com/yc-rdata/yoochoose-data.7z 7z x yoochoose-data.7z ``` GRU4REC的数据过滤,下载脚本[https://github.com/hidasib/GRU4Rec/blob/master/examples/rsc15/preprocess.py](https://github.com/hidasib/GRU4Rec/blob/master/examples/rsc15/preprocess.py), 注意修改文件路径 line12: PATH_TO_ORIGINAL_DATA = './' line13:PATH_TO_PROCESSED_DATA = './' 注意使用python3 执行脚本 ``` python preprocess.py ``` 生成的数据格式如下 ``` SessionId ItemId Time 1 214536502 1396839069.277 1 214536500 1396839249.868 1 214536506 1396839286.998 1 214577561 1396839420.306 2 214662742 1396850197.614 2 214662742 1396850239.373 2 214825110 1396850317.446 2 214757390 1396850390.71 2 214757407 1396850438.247 ``` 数据格式需要转换, 运行脚本如下 ``` python convert_format.py ``` 模型的训练及测试数据如下,一行表示一个用户按照时间顺序的序列 ``` 214536502 214536500 214536506 214577561 214662742 214662742 214825110 214757390 214757407 214551617 214716935 214774687 214832672 214836765 214706482 214701242 214826623 214826835 214826715 214838855 214838855 214576500 214576500 214576500 214821275 214821275 214821371 214821371 214821371 214717089 214563337 214706462 214717436 214743335 214826837 214819762 214717867 214717867 ``` 根据训练和测试文件生成字典和对应的paddle输入文件 需要将训练文件放到目录raw_train_data下,测试文件放到目录raw_test_data下,并生成对应的train_data,test_data和vocab.txt文件 ``` python text2paddle.py raw_train_data/ raw_test_data/ train_data test_data vocab.txt ``` 转化后生成的格式如下,可参考train_data/small_train.txt ``` 197 196 198 236 93 93 384 362 363 43 336 364 407 421 322 314 388 128 58 138 138 46 46 46 34 34 57 57 57 342 228 321 346 357 59 376 110 110 ``` ## 训练 具体的参数配置可运行 ``` python train.py -h ``` 全词表cross entropy 训练代码 gpu 单机单卡训练 ``` bash CUDA_VISIBLE_DEVICES=0 python train.py --train_dir train_data --use_cuda 1 --batch_size 50 --model_dir model_output ``` cpu 单机训练 ``` bash python train.py --train_dir train_data --use_cuda 0 --batch_size 50 --model_dir model_output ``` gpu 单机多卡训练 ``` bash CUDA_VISIBLE_DEVICES=0,1 python train.py --train_dir train_data --use_cuda 1 --parallel 1 --batch_size 50 --model_dir model_output --num_devices 2 ``` cpu 单机多卡训练 ``` bash CPU_NUM=10 python train.py --train_dir train_data --use_cuda 0 --parallel 1 --batch_size 50 --model_dir model_output --num_devices 10 ``` 负采样 bayesian pairwise ranking loss(bpr loss) 训练 ``` CUDA_VISIBLE_DEVICES=0 python train_sample_neg.py --loss bpr --use_cuda 1 ``` 负采样 cross entropy 训练 ``` CUDA_VISIBLE_DEVICES=0 python train_sample_neg.py --loss ce --use_cuda 1 ``` ## 自定义网络结构 可在[net.py](./net.py) `network` 函数中调整网络结构,当前的网络结构如下: ```python emb = fluid.layers.embedding( input=src, size=[vocab_size, hid_size], param_attr=fluid.ParamAttr( initializer=fluid.initializer.Uniform( low=init_low_bound, high=init_high_bound), learning_rate=emb_lr_x), is_sparse=True) fc0 = fluid.layers.fc(input=emb, size=hid_size * 3, param_attr=fluid.ParamAttr( initializer=fluid.initializer.Uniform( low=init_low_bound, high=init_high_bound), learning_rate=gru_lr_x)) gru_h0 = fluid.layers.dynamic_gru( input=fc0, size=hid_size, param_attr=fluid.ParamAttr( initializer=fluid.initializer.Uniform( low=init_low_bound, high=init_high_bound), learning_rate=gru_lr_x)) fc = fluid.layers.fc(input=gru_h0, size=vocab_size, act='softmax', param_attr=fluid.ParamAttr( initializer=fluid.initializer.Uniform( low=init_low_bound, high=init_high_bound), learning_rate=fc_lr_x)) cost = fluid.layers.cross_entropy(input=fc, label=dst) acc = fluid.layers.accuracy(input=fc, label=dst, k=20) ``` ## 训练结果示例 我们在Tesla K40m单GPU卡上训练的日志如下所示 ```text epoch_1 start step:100 ppl:441.468 step:200 ppl:311.043 step:300 ppl:218.952 step:400 ppl:186.172 step:500 ppl:188.600 step:600 ppl:131.213 step:700 ppl:165.770 step:800 ppl:164.414 step:900 ppl:156.470 step:1000 ppl:174.201 step:1100 ppl:118.619 step:1200 ppl:122.635 step:1300 ppl:118.220 step:1400 ppl:90.372 step:1500 ppl:135.018 step:1600 ppl:114.327 step:1700 ppl:141.806 step:1800 ppl:93.416 step:1900 ppl:92.897 step:2000 ppl:121.703 step:2100 ppl:96.288 step:2200 ppl:88.355 step:2300 ppl:101.737 step:2400 ppl:95.934 step:2500 ppl:86.158 step:2600 ppl:80.925 step:2700 ppl:202.219 step:2800 ppl:106.828 step:2900 ppl:91.458 step:3000 ppl:105.988 step:3100 ppl:87.067 step:3200 ppl:92.651 step:3300 ppl:101.145 step:3400 ppl:91.247 step:3500 ppl:107.656 step:3600 ppl:89.410 ... ... step:15700 ppl:76.819 step:15800 ppl:62.257 step:15900 ppl:81.735 epoch:1 num_steps:15907 time_cost(s):4154.096032 model saved in model_recall20/epoch_1 ... ``` ## 预测 运行命令 全词表运行infer.py, 负采样运行infer_sample_neg.py。 ``` CUDA_VISIBLE_DEVICES=0 python infer.py --test_dir test_data/ --model_dir model_output/ --start_index 1 --last_index 10 --use_cuda 1 ``` ## 预测结果示例 ```text model:model_r@20/epoch_1 recall@20:0.613 time_cost(s):12.23 model:model_r@20/epoch_2 recall@20:0.647 time_cost(s):12.33 model:model_r@20/epoch_3 recall@20:0.662 time_cost(s):12.38 model:model_r@20/epoch_4 recall@20:0.669 time_cost(s):12.21 model:model_r@20/epoch_5 recall@20:0.673 time_cost(s):12.17 model:model_r@20/epoch_6 recall@20:0.675 time_cost(s):12.26 model:model_r@20/epoch_7 recall@20:0.677 time_cost(s):12.25 model:model_r@20/epoch_8 recall@20:0.679 time_cost(s):12.37 model:model_r@20/epoch_9 recall@20:0.680 time_cost(s):12.22 model:model_r@20/epoch_10 recall@20:0.681 time_cost(s):12.2 ``` ## 多机训练 可参考cluster_train.py 配置其他多机环境 运行命令本地模拟多机场景 ``` sh cluster_train.sh ``` 注意本地模拟需要关闭代理