# 新增Pass
本文从三个方面介绍了`Lite`中的`Pass`结构:**Pass是什么**、**Pass的实现与接口**、**Pass的一般注册流程**。最后以`Fc_fuse_pass`为例介绍了`fusion_pass`的作用与注册方法。
## 前述:Pass是什么?
**CxxPredictor加载模型后,在执行预测前会先优化模型。模型优化过程是通过Pass实现的。**
具体调用关系如下:

- `CreatePredictor(CxxConfig)`函数调用了Predictor->Build(CxxConfig)
- CxxPredictor的构建过程(Build)分为两步:
- Predictor->LoadModel() 加载模型文件到program中
- Predicotr->optimizer_.Run() 对Program中的原始图形结构进行优化
- 对图结构的优化是通过调用 `Pass->Apply(const std::unique_ptr
& graph)`方法实现的。
**每一类Pass定义了一种优化过程**,包括:原模型中的kernel选取、OP融合、冗余OP去除、子图创建、内存优化、类型推导、类型转换等。
## Pass的实现与接口 :Pass基类、PassManager和Pass注册
### 1、Pass基类:`paddle::lite::mir::Pass`
```c++
class Pass {
public:
// Pass的类型,Pass按照作用的不同可以分为三种
enum class Kind { //种类的作用不太清楚
// 1. 修改模型中的图拓扑结构的Pass
kProgramWise = 0,
// 2. 不修改图结构,修改状态的Pass
kStmtWise,
// 3. 不修改 IR,用于搜集信息和可视化信息的Pass.
kDebug,
};
// 主要实现函数:Apply 函数定义了 Pass 运行时执行的操作
virtual void Apply(const std::unique_ptr& graph) = 0;
bool is_program_pass() const { return kind_ == Kind::kProgramWise; }
bool is_stmt_pass() const { return kind_ == Kind::kStmtWise; }
virtual ~Pass() = default;
private:
const Kind kind_; // pass 的种类
std::string name_; // pass 的名称
std::set bound_targets_; // 指定了Pass运行的硬件平台,模型优化过程会根据当前硬件平台是否匹配筛选Pass。
std::unordered_map> bound_kernels_; // 绑定的kernel
};
// Different kinds.
class ProgramPass : public Pass {
public:
ProgramPass() : Pass(Kind::kProgramWise) {}
};
class StmtPass : public Pass {
public:
StmtPass() : Pass(Kind::kStmtWise) {}
};
class DebugPass : public Pass {
public:
DebugPass() : Pass(Kind::kDebug) {}
};
```
**代码位置**:`lite/core/mir/pass.h`
**主要类成员**:
`const Kind kind_` : Pass类型。pass 有三种基本基本类型 :修改图结构的`ProgramPass`、修改状态量的`StmtPass`和Debug过程采集信息与控制可视化的`DebugPass`。
`std::string name_` :pass 的名称
`std::set bound_targets_` : Pass运行的硬件平台,optimizer.Run()优化过程会根据硬件平台选择匹配的Pass。------根据硬件平台自动选择需要的pass
`std::unordered_map> bound_kernels_` : Pass 绑定的kernel (what's this used for)
**主要接口**:
`Pass::Apply(const std::unique_ptr& graph)` : Pass优化过程的具体操作,是新注册Pass需要实现的接口。输入为`SSAGraph`型指针,是对模型结构的拓扑表示。
### 2、Pass管理 `paddle::lite::mir::PassManager`
```c++
class PassManager {
public:
// 内部静态变量PassManager,用来存储使用的Pass和图优化操作
static PassManager& Global() {
static PassManager x;
return x;
}
// 执行所有的 Pass
void Run(const std::unique_ptr& graph) {
for (auto& pass : passes_) {
LOG(INFO) << "Running MIR pass " << pass->name();
pass->Apply(graph);
}
private:
std::list passes_; //存储所有的 Pass
std::map pass_map_; //使用map变量存储 PassName::Pass
}
```
**代码位置**:`lite/core/mir/pass_manager.h`
**主要类成员**:
`std::list:unique_ptr> passes_;` : List类型,存储了所有已注册Pass。
`std::map pass_map_; ` : Map类型,存储了所有"Pass名称-Pass类"键对,用于根据名称查找Pass。
**主要接口**:
`static PassManager& Global()` 返回PassManager全局静态变量,该变量存储了所有已注册的Pass
` bool AddNewPass(const std::string& name, Pass* pass)` 添加新的Pass到PassManager中
### 3、 Pass 注册 `paddle::lite::mir::PassRegistry`
**代码位置**:`lite/core/mir/pass_registry.h`
**主要接口**:
`REGISTER_MIR_PASS(name__, class__)` :宏定义函数,用于注册Pass。注册Pass过程实现的是 `PassManager::Global().AddNewPass(name__, class__)`,将新注册Pass添加到全局变量`PassManager`中。
## Pass的一般注册流程与使用方法
### 1. Pass 注册流程
在`lite/core/mir`或其子目录下继承`Pass基类`,实现`Pass::Apply`接口,并使用宏`REGISTER_MIR_PASS(name__, class__)`将Pass注册到`PassManager`即完成了新Pass注册。
**以新建 **`new_demo_pass`**为例**,具体流程如下:
(1)在`lite/core/mir`路径下新建`example_pass.cc` 和 `new_demo_pass.h` 文件
(2)在`example_pass.h` 文件中继承Pass基类(ProgramPass、StmtPass或DebugPass)定义自己的Pass类。
```c++
#include "lite/core/mir/pass.h"
namespace paddle {
namespace lite {
namespace mir {
class ExamplePass : public ProgramPass {
void Apply(const std::unique_ptr &graph) override {}
...
};
} // namespace mir
} // namespace lite
} // namespace paddle
```
(3)在`example_pass.cc` 文件中实现`ExamplePass::Apply()`接口,并注册`ExamplePass`
```c++
#include "lite/core/mir/pass_registry.h"
#include "lite/core/mir/example_pass.h"
namespace paddle {
namespace lite {
namespace mir {
void ExamplePass::Apply(const std::unique_ptr& graph) {
...
}
} // namespace mir
} // namespace lite
} // namespace paddle
REGISTER_MIR_PASS(example_pass, paddle::lite::mir::ExamplePass)
.BindTargets({TARGET(kARM)}); // Pass执行的目标硬件平台
// .BindKernel("conv2d"); //Pass绑定的 kernel
```
(4)修改`lite/core/mir/CMakeLists.txt`文件,将`example_pass.cc` 编译到`mir_passes`库中
```cmake
lite_cc_library(mir_passes
SRCS
demo_pass.cc // 新建的Pass文件
...
memory_optimize_pass.cc
DEPS mir_pass types context ${mir_fusers} ${subgraph_passes})
```
### 2. Pass使用流程
将Pass注册到PassManager后不会自动生效。需要在`optimizer->run()` 函数中添加该Pass才会在模型优化过程中调用。
(1)在`paddle_use_passes.h`文件中调用该Pass
```cmake
#include "paddle_lite_factory_helper.h" // NOLINT
...
USE_MIR_PASS(new_demo_pass); //调用 new_demo_pass
```
(2)要想在优化模型时调用该Pass,需要在`optimizer->run()`函数中手动添加调用。
修改`lite/core/optimizer.h`文件,添加`new_demo_pass`到`Optimizer::Run()`函数;
```c++
class Optimizer {
public:
void Run(...) {
...
if (passes.empty()) {
RunPasses(std::vector{
{"new_demo_pass" //将新注册的Pass添加在这里
...
}
...
}
```
(3)只有CxxPredictor才会在模型加载后根据Pass优化模型。
```c++
...
#include "paddle_use_passes.h" // 引用Pass优化模型
void RunModel() {
// 1. 创建 CxxConfig
CxxConfig config;
config.set_model_dir(FLAGS_model_dir);
config.set_valid_places(Place{TARGET(kARM), PRECISION(kFloat)});
// 2. 创建CxxPredictor,该过程包括加载模型和用Pass优化模型
std::shared_ptr> predictor =
Creat(config);
}
```
## Fusion Pass的定义与注册
`Fusion Pass`是一种常见图结构优化Pass,可将多个连续OP融合成单个等效OP,减少数据交换并简化图结构。Pass运行时调用`Fuser`自动查找并替换指定图结构,所以注册`FuserPass`时还需要实现对应的Fuser类。
下面以`fc_fuse_pass`为例,详细说明`FusionPass`的效果和注册方法。
### `fc_fuse_pass`的作用
将相邻的`mul`算子和 `element_wise add `算子 融合成一个 `FC` 算子
```c++
mul(X) = X * W
elementwise_add( mul(x) ) = X * W + Bias
//----------> after fusion
FC(X) = X * W +Bias
```
Pass 运行效果如下:

mul和elementwise_add的原有参数映射到FC的参数上:

### `fc_fuse_pass`的注册方法
#### 1、创建FcFuser
(1)在`lite/core/mir/fusion`路径下新建`fc_fuser.cc` 和 `fc_fuser.h` 文件
(2)在`fc_fuser.h` 文件中继承`FuseBase`定义自己的Fuser类。
```c++
#include "lite/core/mir/pattern_matcher_high_api.h"
namespace paddle {
namespace lite {
namespace mir {
namespace fusion {
class FcFuser : public FuseBase {
public:
void BuildPattern() override;
void InsertNewNode(SSAGraph* graph, const key2nodes_t& matched) override;
private:
cpp::OpDesc GenOpDesc(const key2nodes_t& matched) override;
};
} // namespace fusion
} // namespace mir
} // namespace lite
} // namespace paddle
```
**主要接口**:
`FuseBase::BuildPattern` : 描述需要替换位置的图结构(pattern),Fuser运行时会自动查找并替换该pattern。
`FuseBase::GenOpDesc` : 创建融合后的等效Fused_op。
`FuseBase::InsertNewNode` :用Fused_op替换原始图结构(pattern)。
对于 `FcFuser`:BuildPattern描述的Pattern是`mul+elementwise add`,GenOpDesc创建的FC_op,InsertNewNode函数的效果是用新建的`FC_op`替换模型中的`mul+elementwise add` pattern。
(3) 在`fc_fuser.cc`文件中实现 `BuildPattern()` 、`GenOpDesc()`、`InsertNewNode() `接口
下面以FcFuser为例介绍三种接口的实现:
```c++
// 1. BuildPattern函数,描述需要替换的图结构
// FcFuser::BuildPattern() 描述了 mul + element_wise add 图结构
void FcFuser::BuildPattern() {
// (1) 用OpNode描述和VarNode
// mul OP
auto* mul = OpNode("mul", "mul");
// mul OP 的输入和输出
auto* x = VarNode("x")->assert_is_op_input("mul", "X");
auto* W = VarNode("W")->assert_is_op_input("mul", "Y");
auto* mul_out = VarNode("mul_out");
// elementwise_add OP
auto* add = OpNode("add", "elementwise_add");
//elementwise_add 的输入
auto* b = VarNode("b")->assert_is_persistable_var();
// elementwise_add OP的输出(最终输出)
auto* Out = VarNode("Out");
//(2) 描述拓扑连接 (Fuse之前mul 和elementwise_add的连接)
std::vector mul_inputs{W, x};
std::vector add_inputs{mul_out, b};
mul_inputs >> *mul >> *mul_out;
add_inputs >> *add >> *Out;
//(3) 声明新的拓扑结构中将会被移除的节点,包括被fuse的OP和OP之间的中间变量
mul_out->AsIntermediate();
mul->AsIntermediate();
add->AsIntermediate();
}
// 2. GenOpDesc函数新建等效 Fused_op
// FcFuser::GenOpDesc() 新建了Fc_op
cpp::OpDesc FcFuser::GenOpDesc(const key2nodes_t& matched) {
// (1) 得到第一个OP节点的 OpDesc ,并清空输入输出信息
cpp::OpDesc op_desc = *matched.at("mul")->stmt()->op_info();
op_desc.mutable_inputs()->clear();
op_desc.mutable_outputs()->clear();
// (2) 修改OpDesc , 将OpType设置为 "fc" (FC OP 的OP_type),
op_desc.SetType("fc");
// (3) 设置OpDesc中的Input、Output、Attrbute。分别连接到BuildPattern()函数中创建的VarNode
op_desc.SetInput("Input", {matched.at("x")->arg()->name});
op_desc.SetInput("W", {matched.at("W")->arg()->name});
op_desc.SetInput("Bias", {matched.at("b")->arg()->name});
op_desc.SetOutput("Out", {matched.at("Out")->arg()->name});
op_desc.SetAttr(
"in_num_col_dims",
matched.at("mul")->stmt()->op_info()->GetAttr("x_num_col_dims"));
return op_desc;
}
// 3. InsertNewNode函数用Fused OP 替换模型图中的原始 Pattern
// FcFuser::InsertNewNode() 用Fc_OP替换原始模型图中的 " mul + element_wise add "
void FcFuser::InsertNewNode(SSAGraph* graph, const key2nodes_t& matched) {
// (1) 创建FC OP的参数(OpDesc)
auto op_desc = GenOpDesc(matched);
// 创建一个 FC OP
auto fc_op = LiteOpRegistry::Global().Create("fc");
// 找到原拓扑结构中的scope (作用域)和 valid_places (可支持设备类型)
auto mul = matched.at("mul")->stmt()->op();
auto* scope = mul->scope();
auto& valid_places = mul->valid_places();
// (2) 将 FC OP的 scope和 valid_places设置与fuse前相同,并在图中创建该节点(node)
fc_op->Attach(op_desc, scope);
auto* new_op_node = graph->GraphCreateInstructNode(fc_op, valid_places);
// (3) 将FC节点连接到输入输出(var_node)
IR_NODE_LINK_TO(matched.at("W"), new_op_node);
IR_NODE_LINK_TO(matched.at("x"), new_op_node);
IR_NODE_LINK_TO(matched.at("b"), new_op_node);
IR_NODE_LINK_TO(new_op_node, matched.at("Out"));
}
```
#### 2、注册fc_fuse_pass
(1)在`lite/core/mir/fusion`路径下新建`fc_fuse_pass.cc` 和 `fc_fuse_pass.h` 文件
(2)在`fc_fuse_pass.h` 文件中,继承`ProgramPass`定义`FcFusePass`。
```c++
#include "lite/core/mir/pass.h"
namespace paddle {
namespace lite {
namespace mir {
class FcFusePass : public ProgramPass {
public:
void Apply(const std::unique_ptr& graph) override; namespace mir namespace lite namespace paddle
```
(3)在`fc_fuse_pass.cc` 文件中实现`FcFusePass::Apply()`接口,并注册`FcFusePass`
```c++
#include "lite/core/mir/pass_registry.h"
#include "lite/core/mir/example_pass.h"
namespace paddle {
namespace lite {
namespace mir {
void FcFusePass::Apply(const std::unique_ptr& graph) {
fusion::FcFuser fuser;
fuser(graph.get());namespace mir
} // namespace lite
} // namespace paddle
REGISTER_MIR_PASS(lite_fc_fuse_pass, paddle::lite::mir::FcFusePass)
.BindTargets({TARGET(kAny)}) // FcFusePass 可以在任何硬件平台执行
.BindKernel("fc"); // FcFusePass 绑定 fc_kernel
```
(4)修改`lite/core/mir/fusion/CMakeLists.txt`文件,将`fc_fuser.cc` 编译到`mir_fusers`库
```cmake
lite_cc_library(fuse_fc
SRCS fc_fuser.cc
DEPS pattern_matcher_high_api)
set(mir_fusers
fuse_fc
...
CACHE INTERNAL "fusers")
```
(5)修改`lite/core/mir/CMakeLists.txt`文件,将`fc_fuse_pass.cc` 编译到`mir_pass`库
```cmake
lite_cc_library(mir_passes
SRCS
fusion/fc_fuse_pass.cc
...
DEPS mir_pass types context ${mir_fusers} ${subgraph_passes})
```
#### 3、使用 fc_fuse_pass
(1) `lite/api/paddle_use_passes.h`使用`USE_LITE_PASS`宏来引入新加入的pass
```c++
USE_MIR_PASS(lite_fc_fuse_pass);
```
(2) 在`lite/core/optimizer.h`文件的`Optimizer::Run()`函数中添加新注册的pass
```C++
class Optimizer {
public:
void Run(Program&& program,
const std::vector& valid_places,
core::KernelPickFactor kernel_pick_factor,
const std::vector& passes = {}) {
...
if (passes.empty()) {
RunPasses(std::vector{
{"lite_fc_fuse_pass", // the newly registered pass
...
"argument_type_display_pass"}});
} else {
RunPasses(passes);
}
exec_scope_ = program.exec_scope();
}
```
(3) 以上修改完成后,在CreatePredictor(CxxConfig)创建CxxPredictor时,模型优化过程会调用`lite_fc_fuse_pass `,扫描`mul + element_wise add`结构并替换为等效的Fc_OP。