申威 CPU 安装说明¶
Paddle Inference 支持基于申威 CPU 的推理部署, 当前仅支持通过源码编译的方式安装。
源码编译¶
环境准备: 请根据编译依赖表准备符合版本要求的依赖库,推荐使用飞桨官方镜像,否则请参考麒麟技术文档或普华操作系统。
第一步: 从飞桨镜像库拉取编译镜像,该镜像基于麒麟 V10 操作系统构建
# 拉取镜像
docker pull registry.baidubce.com/device/paddle-cpu:kylinv10-sw64-gcc83
# 启动容器
docker run -it --name paddle-dev -v `pwd`:/workspace \
--network=host --shm-size=128G --workdir=/workspace \
--cap-add=SYS_PTRACE --security-opt seccomp=unconfined \
registry.baidubce.com/device/paddle-cpu:kylinv10-sw64-gcc83 /bin/bash
第二步: 下载 Paddle 源码并编译,CMAKE 编译选项含义请参见编译选项表
# 下载源码,默认 develop 分支
git clone https://github.com/PaddlePaddle/Paddle.git
cd Paddle
# 创建编译目录
mkdir build && cd build
# 执行cmake
cmake .. -DPY_VERSION=3 -DPYTHON_EXECUTABLE=`which python3` -DWITH_SW=ON \
-DWITH_TESTING=OFF -DON_INFER=ON -DWITH_XBYAK=OFF \
-DCMAKE_CXX_FLAGS="-Wno-error -w"
# 使用以下命令来编译
make -j$(nproc)
第三步: 编译完成之后,请检查编译目录下的 Python whl 包 和 C++ 预测库是否正确生成
# 检查编译目录下的 Python whl 包
Paddle/build/python/dist/
└── paddlepaddle-0.0.0-cp37-cp37m-linux_sw_64.whl
# 检查编译目录下的 C++ 预测库,目录结构如下
Paddle/build/paddle_inference_install_dir
├── CMakeCache.txt
├── paddle
│ ├── include # C++ 预测库头文件目录
│ │ ├── crypto
│ │ ├── experimental
│ │ ├── internal
│ │ ├── paddle_analysis_config.h
│ │ ├── paddle_api.h
│ │ ├── paddle_infer_contrib.h
│ │ ├── paddle_infer_declare.h
│ │ ├── paddle_inference_api.h # C++ 预测库头文件
│ │ ├── paddle_mkldnn_quantizer_config.h
│ │ ├── paddle_pass_builder.h
│ │ └── paddle_tensor.h
│ └── lib
│ ├── libpaddle_inference.a # C++ 静态预测库文件
│ └── libpaddle_inference.so # C++ 动态态预测库文件
├── third_party
│ ├── install # 第三方链接库和头文件
│ │ ├── cryptopp
│ │ ├── gflags
│ │ ├── glog
│ │ ├── protobuf
│ │ ├── utf8proc
│ │ └── xxhash
│ └── threadpool
│ └── ThreadPool.h
└── version.txt # 预测库版本信息
安装部署¶
Python 安装部署¶
请参考以下步骤执行 Python 安装部署示例程序:
# 1) 安装源码编译生成的 Python whl 包
python3 -m pip install -U paddlepaddle-0.0.0-cp37-cp37m-linux_sw_64.whl
# 2) 进行简单功能的健康检查
python3 -c "import paddle; paddle.utils.run_check()"
# 预期得到如下输出结果
# Running verify PaddlePaddle program ...
# PaddlePaddle works well on 1 CPU.
# PaddlePaddle works well on 2 CPUs.
# PaddlePaddle is installed successfully! Let's start deep learning with PaddlePaddle now.
# 3) 下载 Paddle-Inference-Demo 示例代码,并进入 Python 代码目录
git clone https://github.com/PaddlePaddle/Paddle-Inference-Demo.git
cd Paddle-Inference-Demo/python/cpu/resnet50
# 4) 下载推理模型
wget https://paddle-inference-dist.bj.bcebos.com/Paddle-Inference-Demo/resnet50.tgz
tar xzf resnet50.tgz
# 5) 准备预测图片
wget https://paddle-inference-dist.bj.bcebos.com/inference_demo/python/resnet50/ILSVRC2012_val_00000247.jpeg
# 6) 运行 Python 预测程序
python3 infer_resnet.py --model_file=./resnet50/inference.pdmodel --params_file=./resnet50/inference.pdiparams
# 预期得到如下输出结果
# class index: 13
C++ 安装部署¶
请参考以下步骤执行 C++ 安装部署示例程序:
# 1) 下载 Paddle-Inference-Demo 代码
git clone https://github.com/PaddlePaddle/Paddle-Inference-Demo.git
# 2) 拷贝源码编译生成的 C++ 预测库到 Paddle-Inference-Demo/c++/lib 目录下
cp -r Paddle/build/paddle_inference_install_dir Paddle-Inference-Demo/c++/lib/paddle_inference
# 拷贝完成之后 Paddle-Inference-Demo/c++/lib 目录结构如下
Paddle-Inference-Demo/c++/lib/
├── CMakeLists.txt
└── paddle_inference
├── CMakeCache.txt
├── paddle
├── third_party
└── version.txt
# 3) 进入 C++ 示例代码目录,下载推理模型
cd Paddle-Inference-Demo/c++/cpu/resnet50/
wget https://paddle-inference-dist.bj.bcebos.com/Paddle-Inference-Demo/resnet50.tgz
tar xzf resnet50.tgz
# 4) 修改 compile.sh 编译文件,需根据 C++ 预测库的 version.txt 信息对以下的几处内容进行修改
WITH_MKL=OFF
WITH_GPU=OFF
WITH_SW=ON
# 5) 执行编译,编译完成之后在 build 下生成 resnet50_test 可执行文件
./compile.sh
# 6) 运行 C++ 预测程序
./build/resnet50_test --model_file resnet50/inference.pdmodel --params_file resnet50/inference.pdiparams
# 预期得到如下输出结果
# I0529 08:34:34.277042 37515 resnet50_test.cc:79] run avg time is 3669.86 ms
# I0529 08:34:34.277190 37515 resnet50_test.cc:116] 0 : 8.76168e-29
# ... ...
# I0529 08:34:34.277348 37515 resnet50_test.cc:116] 800 : 3.85252e-25
# I0529 08:34:34.277367 37515 resnet50_test.cc:116] 900 : 8.76168e-29