20 #include "fastdeploy/core/fd_tensor.h" 21 #include "fastdeploy/utils/axis_utils.h" 22 #include "unsupported/Eigen/CXX11/Tensor" 29 using Type = Eigen::DSizes<Eigen::DenseIndex, D>;
31 static Type From(
const std::vector<int64_t>& dims) {
33 for (int64_t d = 0; d < dims.size(); d++) {
41 template <
typename T,
size_t D,
int MajorType = Eigen::RowMajor,
42 typename IndexType = Eigen::DenseIndex>
44 using Type = Eigen::TensorMap<Eigen::Tensor<T, D, MajorType, IndexType>>;
47 Eigen::TensorMap<Eigen::Tensor<const T, D, MajorType, IndexType>>;
49 static Type From(FDTensor& tensor,
50 const std::vector<int64_t>& dims) {
51 return Type(reinterpret_cast<T*>(tensor.Data()), EigenDim<D>::From(dims));
54 static Type From(FDTensor& tensor) {
55 return From(tensor, tensor.shape);
58 static ConstType From(
const FDTensor& tensor,
59 const std::vector<int64_t>& dims) {
60 return ConstType(reinterpret_cast<const T*>(tensor.Data()),
61 EigenDim<D>::From(dims));
64 static ConstType From(
const FDTensor& tensor) {
65 return From(tensor, tensor.shape);
69 template <
typename T,
int MajorType = Eigen::RowMajor,
70 typename IndexType = Eigen::DenseIndex>
73 using Type = Eigen::TensorMap<
74 Eigen::TensorFixedSize<T, Eigen::Sizes<>, MajorType, IndexType>>;
75 using ConstType = Eigen::TensorMap<
76 Eigen::TensorFixedSize<const T, Eigen::Sizes<>, MajorType, IndexType>>;
78 static Type From(FDTensor& tensor) {
79 return Type(reinterpret_cast<T*>(tensor.Data()));
82 static ConstType From(
const FDTensor& tensor) {
83 return ConstType(reinterpret_cast<const T*>(tensor.Data()));
87 template <
typename T,
int MajorType = Eigen::RowMajor,
88 typename IndexType = Eigen::DenseIndex>
89 struct EigenVector :
public EigenTensor<T, 1, MajorType, IndexType> {
91 static typename EigenVector::Type Flatten(FDTensor& tensor) {
92 return EigenVector::From(tensor, {tensor.Numel()});
95 static typename EigenVector::ConstType Flatten(
96 const FDTensor& tensor) {
97 return EigenVector::From(tensor, {tensor.Numel()});
101 template <
typename T,
int MajorType = Eigen::RowMajor,
102 typename IndexType = Eigen::DenseIndex>
103 struct EigenMatrix :
public EigenTensor<T, 2, MajorType, IndexType> {
104 static typename EigenMatrix::Type Reshape(FDTensor& tensor,
106 int rank = tensor.shape.size();
107 FDASSERT((num_col_dims > 0 && num_col_dims < rank),
108 "Input dimension number(num_col_dims) must be between 0 and %d, " 109 "but received number is %d.",
111 const int n = SizeToAxis(num_col_dims, tensor.shape);
112 const int d = SizeFromAxis(num_col_dims, tensor.shape);
113 return EigenMatrix::From(tensor, {n, d});
116 static typename EigenMatrix::ConstType Reshape(
const FDTensor& tensor,
118 int rank = tensor.shape.size();
119 FDASSERT((num_col_dims > 0 && num_col_dims < rank),
120 "Input dimension number(num_col_dims) must be between 0 and %d, " 121 "but received number is %d.",
123 const int n = SizeToAxis(num_col_dims, tensor.shape);
124 const int d = SizeFromAxis(num_col_dims, tensor.shape);
125 return EigenMatrix::From(tensor, {n, d});
129 class EigenDeviceWrapper {
131 static std::shared_ptr<EigenDeviceWrapper> GetInstance();
132 const Eigen::DefaultDevice* GetDevice()
const;
135 Eigen::DefaultDevice device_;
136 static std::shared_ptr<EigenDeviceWrapper> instance_;
All C++ FastDeploy APIs are defined inside this namespace.
Definition: option.h:16