sequence_unpad¶
- paddle.static.nn. sequence_unpad ( x, length, name=None ) [source]
-
Note
The input of the OP is Tensor and the output is Tensor. For padding operation, See:** sequence_pad
Remove the padding data from the input based on the length information and returns a Tensor.
Case 1: Given input Tensor **x**: x.data = [[ 1.0, 2.0, 3.0, 4.0, 5.0], [ 6.0, 7.0, 8.0, 9.0, 10.0], [11.0, 12.0, 13.0, 14.0, 15.0]], in which there are 3 sequences padded to length 5, and the actual length specified by input Tensor **length**: length.data = [2, 3, 4], after unpadding, the output Tensor will be: out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]] out.lod = [[0, 2, 5, 9]]
- Parameters
-
x (Tensor) – A Tensor which contains padding data, and its shape size can not be less than 2. Supported data types: float32, float64, int32, int64.
length (Tensor) – A 1D Tensor that stores the actual length of each sample, and the Tensor has the same shape with the 0th dimension of the X . Supported data types: int64.
name (str|None) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name
- Returns
-
A Tensor whose recursive sequence length is consistent with the information of the length parameter and it has the same data type with input.
- Return type
-
Tensor
Examples
>>> import paddle >>> paddle.enable_static() >>> import paddle.base as base >>> import numpy >>> # pad data >>> x = paddle.static.data(name='x', shape=[10, 5], dtype='float32', lod_level=1) >>> pad_value = paddle.assign(numpy.array([0.0], dtype=numpy.float32)) >>> pad_data, len = paddle.static.nn.sequence_pad(x=x, pad_value=pad_value) >>> # unpad data >>> unpad_data = paddle.static.nn.sequence_unpad(x=pad_data, length=len)